César Henrique Keiti Kuroiwa
Alexandre Marques Lima

Modelagem 3D de um Pulm&o Animado

Monografia de Trabalho de Formatura,
apresentado a Escola Politécnica da
Universidade de Sao Paulo para obtengédo
do titulo de Engenheiro Mecanico com
énfase em Mecatronica e Sistemas
Mecanicos

Sac Paulo
2006

César Henrique Keiti Kuroiwa
Alexandre Marques Lima

.1 Q g 10,2
(0w > 2o)

Modelagem 3D de um Pulmao Animado

Monografia de Trabalho de Formatura,
apresentado a Escola Politécnica da
Universidade de Sao Paulo para obtengéo
do titulo de Engenheiro Mecanico com
énfase em Mecairénica e Sistemas
Mecénicos

Area de Concentragéo:
Engenharia Mecanica com énfase em
Mecatrbnica e Sistemas Mecanicos

Qrientador:
Prof. Dr. Marcos de Sales Guerra Tsuzuki

Sao Pauio
2006

1Y% ok
VAT

DEDALUS - Acervo - EPMN

ARG H AR

31600012475

FICHA CATALOGRAFICA
1544 a4

Kuroiwa, Cesar Henrique Keiti Kuroiwa
Lima, Alexandre Marques

Modelagem 3D de um pulméo animado / A.M. Lima, C.H.K.
Kuroiwa. ~- S3o Paulo, 2006.

80 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de S#o Paulo. Departamento de Engenharia Mecatrénica e de
Sistemas Mecanicos.

1.Pulmio {Modelagem) 2.Terceira dimenséo 3.CAD LKuroiwa,
César Henrique Keiti Il.Universidade de S&o Paulo. Escola Poli-
técnica. Departamento de Engenharia Mecatrbnica e de
Sistemas Mecéanicos .t

AGRADECIMENTOS

Agradecemos a Deus por ter nos dado salde estrutura para podermos
chegar onde estamos chegando hoje. Sem Ele com certeza nio poderiamos
ter chegado t&o longe.

Agradecemos também aos nossos familiares que sempre nos deram
muito apoio em nossas noites de sono mal dormidas e sempre estavam
presentes nos momentos em que mais precisavamos.

Agradecimentos especiais para nosso orientador professor doutor Marcos
de Sales Guerra Tsuzuki, que com muita paciéncia e dedica¢do nos orientou e
ensinou n&o apenas durante o projeto, mas ja anteriormente em nossas aulas.
Ao professor doutor Fabio Kawaoka Takase que juntamente com Tsuzuki nos
deu &nimo, forgas e inumeros conselhos para que pudéssemos concluir nosso
projeto da maneira mais completa possivel.

Por fim agradecemos aos nossos amigos, em especial: Carlos Augusto
Ferreira Fernandes (Chacal), Ana Eun Lee (Ana Lee), Bruno de Lima Pinheiro
(Tato), Leonardo Pereira Monte (Franga), Rafael José Passalacqua {Fox), e as
nossas belas namoradas (Cintia e Leticia) que mesmo nido tendo participado
diretamente no projeto, participam diretamente em nossas vidas com
importancia fundamental dando-nos suporte e apoio emocional para

atravessarmos 0os momentos dificeis.

Never send a human to do a machine's job.
(Agent Smith — The Matrix)

RESUMO

Este trabalho consiste na modelagem de um pulm&c animado em 3
dimensbes. O objetivo principal é a visualizagéo detalhada do puimdo humano
em movimento, visto que existe uma grande dificuldade em se obter esta
visualizac&o de modo direto por meio de técnicas tradicionais como raios-X e
ressonancia magnética. Com relagdo aos raios-X, a sua natureza nociva ao
corpo humano impede que ela seja utilizada por um periocdo prolongado. A
ressonancia magnética é uma técnica lenta permitindo aquisitar apenas
animacdes em 2 dimensdes.

A reconstrugio e animagédo do modelo tridimensional seréo feitas com
hase em seqliéncias de imagens obtidas por resson&ncia magnética. O
procedimento consiste basicamenie em duas etapas. Na primeira, serao
extraidos os contornos do movimento do pulméac em imagens 2D, sendo gue
cada seqiléncia contém um petfil @ um padrdo de respiragdo diferente. De
posse desses dados, numa segunda etapa, sera entdo usado um programa, a
ser desenvolvido, que sera capaz de fazer a reconstrucio de um objeto
(pulméo) em 3D. Para tornar essa reconstrucéo possivel, € necessario primeiro
padronizar todas as fatias 2D, para que possam ser, posteriormente,
“encaixadas”, formando uma malha 3D.

As informacgdes referentes ao desenho do pulméo em 2 dimensdes, tais
como coordenadas dos pontos, curvas e respira¢do, estdo armazenadas em
arquivos, segundo o formato XML. A interpretacéo (parsing) desses dados sera
feita com um programa desenvolvido em C++, com o auxilio da ferramenta
Visual C++ 6.0.

Além disso, na parte de programacao, sera usada também a biblioteca
OpenGL para o tratamento de questdes relacionadas a renderizagdo de objetos
em 3D e animagao dos mesmos.

Palavras-chave: Modelagem. 3D. Pulmao. CAD.

ABSTRACT

This work consists of the 3D modeling of an animated lung. The main
objective is the detailed visualization of the human lung in movement, because a
great difficulty exists in obtaining this visualization in a direct way through
traditional techniques such as X-Ray and Magnetic resonance imaging (MRI).
Regarding the use X-Ray, its harming nature to the human body impedes that it
is used for long period of time. Meanwhile, magnetic resonance is a slow
technique which allows the acquisition of sequences of images in only 2
dimensions.

The reconstruction and animation of the three-dimensional model will be
made based on sequences of images obtained by magnetic resonance. The
procedure consists basically of two stages. in the first, the outline of the lung’s
movement will be extracted, providing us with a series of 2D images sequences,
each of which containing a different patter of breathing. With all that data, in a
second stage, a computer program will be developed, which will be capable of
doing the reconstruction of a 3D model of the human lung. To make that
reconstruction possible, it is first necessary to standardize all the 2D slices, so
that they can be, later, assembled, forming a 3D mesh.

The information regarding the drawing of the lung in 2 dimensions, such as
coordinates of the points, curves and breathing, are stored in files, in XML
format. The interpretation (parsing) of those data it will be done with a program
developed in C++, with the aid of the Visual C++ 6.0 development tool.

Besides, in the programming part, it will also be used the library OpenGL for
the purpose of handling issues such as the rendering of 3D objects and their
animation.

Keywords: Modeling. 3D. Lung. CAD.

LISTA DE FIGURAS

FIGURA 1.1 - A) RECONSTRUGAO TRIDIMENSIONAL, B) AXIAL T2 C) CORONAL T2....ccucrinrunee 13
FIGURA 1.2 - IMAGEM DE RESSONANGCIA MAGNETICA FUNCIONALc..ooeccumrorirmsessemserersserens 156
FIGURA 2.2 ~ IMAGEM CORONALccciuiiiinerrsnraenennemesssmrsessessssesasssasssssssisess sessssssssassssessaseasscnessensas 16
FIGURA 2.3 — DADOS CONTIDOS NO XML....ccoooviimieninmrecserseneemnsn s srnssssssssonsrssssssessissssssnsssases 17
FIGURA 4.1 ~ FATIAS CORONAIS.........ccoectiermrnnerssmnsnsesssnssnne PP P s SN I Y S G 26
FIGURA 4.2 — FATIAS SAGITAIS CORTADAS ... s sensrssssssssseses 26
FIGURA 4.3 ~ SILHUETA COMPOSTA DO PULMAOcooueremcrnrmntnsastremsstsensssevssssssssssssssssiscssasasies 27
FIGURA 4.4 — FATIAS SAGITAIScovitrsiiissiniissnmsmnmnssmsssseresessessessesssrsssssansssssssessss sessssoss s ssessones 28
FIGURA 4.5 — FATIAS CORONAIS CORTADASccovoveremennrsrercsnessarssssmmisssesssssessssssssssssssssnsssensen 28
FIGURA 4.6 - SILHUETA COMPOSTA DO PULMADovivirisimississsessansestssses esesssssssssareserssnsenss 29
FIGURA 5.1 ~ DIVISOES INTERLOBULARES (FATIAS CORONAIS)...........ovsmrerrenmrrmsiarsrsmsecssssenss 32
FIGURA 5.2 — DIVISOES INTERLOBULARES (FATIAS SAGITAIS) ...u.uvuuuiremcicrnecesnresssessereensesesns 33
FIGURA 6.1 - LUNGPLOT — INTERFACE GRAFICA (ESCALA 0)......cccsnreernrecnnssmsinssesrscssssssssssersonss 35
FIGURA 6.2 —~ LUNGPLOT — INTERFACE GRAFICA (ESCALA 1.15)......cccouvetrmrremurressmmssssasssssssionses 36
FIGURA 6.3 — IMAGENS DEFORMADAS EM ESCALA 0.55....cccccunmmvcrmnnrnnsccsnmmmsenannssssssssssns 38
FIGURA 6.4 — BEZIER (2 PONTOS DE CONTROLE}..........coomiircer i mssresvsssssnssnssesersesssssssesssns 38
FIGURA 6.5 — BEZIER (3 PONTOS DE CONTROLE)......cccocuminnsiniesiscermmsnssssnsssssssssssssersssassssssssisesss 38
FIGURA 6.6 ~ BEZIER (4 PONTOS DE CONTROLE)......cconnuseamnsnscnsicesmnssssssssassssssssesmssssssssssesssasens 39
FIGURA 6.7 — EXIBIGAO DOS LIMITES DE MOVIMENTOooovcmmenirmnsnmnsssssssimasssssmssssssssimsense 41

SUMARIO

1 INTRODUGARD.......ccen vttt ssss s sssssssssssssapssess secscssbssmss serasbormssass s AL SRS R SRR RS b R AR 10
1.1 INTRODUGAO A RESSONANCIA MAGNETICA......ccoceurecenrenisesristcsnisssssssssssssssassasissasssasesass 10
1.2 HISTORICO SOBRE RESSONANCIA MAGNETICA. ..ot ceeesscressmssememsesssssasssasssrassssen 11
1.2 PRINGIPIO BASICO DE FUNCIONAMENT G ...veeseseesiessseiasssssesssrosssssssssasessemt sassbsssssansssnansssssanssassnassasasssses 12
1.4 RESSONANCIA MAGNETICA FUNGIONALuiiieerereereamarensrrrreresnsrassosesasasieessrmmensneensssransssssssnnrenbronsrarsres 14

2. IMAGENS REAISconiirriirsnsssircsssssisssssssassssssssssnissssnst iaaansassasssssssss st s asisss 48 sea0s 41888 0ERES RRRRSRERR SRS 4 2R RSEENRS 16

3. DESCRICAO DOS DADOS EM FORMATO XMLccocvvemmersrmsmsesersusescsssetissasssssersisassssssssssssssssssronsees 18
3. RESPIRAGADooviiviiiciestrceesimsestsssascasaes e saanstest s 4t sanes s sae st sns e dserbae s et e s s s bass s ssssnsassarassnsiasrs 18
3.2, IMAGEM DO PULMAD ...eeeeeeeeeereeeesbeessisssssssssrtsssssessrsnsessssansensisssnss sasssssasnssessstesnssianessssnnssesnenanesianes 19

4. RECONSTRUGAO DO PULMAD 3D ...c.oonrurmmnsvmmsnsrsrnsssossssmrsisssenssssnissssssisssmsssasm s sssssssssssassssssssens 21
4.1 ESCALAMENTO DAS FATIAScc o ceerrteressrrrnssissrsaserssssasssssssasastssessressrssanaessssnsassasnneresssasessssbanass 21

4.1.1 ENCAIXE POR DIMENSAQ DE ARESTA VERTICALcooneveaereeereeceverievrserssrrasnsanssss 271
4.1.2 ENCAIXE POR COORDENADA Y INFERIOR cvvvveeiveeivcrciiirsissressssissnssersserssssnvssssssessssenssssiss 23
41,3 ANALISE DO S RE SULTAD DS oo eeeeeeeeeeeeeeeeeeeeeetestaessusssrsssesssantrsesstasserensssiasessrestirsnsns tons 24
4.2 CONSTRUGAD DO MODELOD 3D ... eerrnsisiaesss e assssessssessssesesssessanesssinsssasssssssiasns 25
B2 FATIA BASE SAGITAL ..ottt eeeeveeveneersssisssssesesiasssssnssssssarssssssssossrsssnsssisasassenassassessns 25
4.2.2 FATIA BASE CORONAL......oveeeeeeveeveeevisieserissserresssssstrseressesasnessssssessaresssressssssssssssasssssnenssrns 27

5, DIVISOES INTERLOBULARES........cccconmtrinresnseiesssssiasssmsssssmsstssnssessrsssoss sssssvessessssssssasasssssassssssssssas 30

6. PROGRAMA AUXILIAR PARA VISUALIZAGAO DO MOVIMENTO DAS FATIAS (LUNGPLOT). 34
6.1 INTERPOLACAD POR CURVAS DE BEZIER....ccciireiicarareresssirasernrrermrrssssestsacassesmtsasssss sossssnsases s sassssssmessans 38
6.2 EXIBIGAO DOS LIMITES DE MOVIMENTO ...c.ceveeerirceiescereeseessessnssesssamssessissssasessmsssanesssinssbemss st iissisnsssssses 40
6.3 EXIBICAO DAS INTERSECGOES ENTRE SAGITAIS E CORONAIS.ciciicciirinrirsrmsssrssssnesssnressensssmsesisnseses 41
6.4 DIFERENTES METODOS DE ESCALAMENTO ..iiiiiieitensarnnssssrnssnsssiassssnnsssossstesstesssisseesiassseasssbrnsssssssssarss 44

B. CONCLUSADcceerecrervrcrrcersesssersasssssassssrasensansassasssssas sasatsssasssssanssssassssans st sasssasnssssansbasatsssasesssss sasssnss 49

9. REFERENCIAS BIBLIOGRAFICASoeiieceircerissscrscssstseseseessisssssevarsstssssrass s sissssasrsssasssessssa st vensns 51

ANEXO A - LISTAGEM COMPLETA DO CODIGOoooserreresmssesssressesssracssssssssssssssssssssssses seasesssasssreses 52

1. INTRODUCAO

A motivagéo para a realizagdo deste trabalho é no campo medicinal, o
conhecimento mais aprofundado dos movimentos do pulmdo e das
caracteristicas fisicas deste como volume, area superficial, divisbes internas. O
que torna o puimdo um o6rgdo diferente dos demais é o fato de nioc possuir
movimento proprio, sendo que seu movimento é uma conseqiiéncia dos varios
outros misculos ao seu redor (coragio e diafragma, por exemplo). Isso faz com
que o movimento pulmonar ndo possa ser visto com o toérax do paciente aberto,
durante uma cirurgia, sendo assim necessaric recorrer a métodos indiretos,
como por exemplo, a computacéo grafica, que € o caso neste trabalho.

No campo da engenharia, o conhecimento de técnicas de modelagem e
de CAD é exiremamente importante.

Primeiramente, séo utilizados documentos XML para armazenar todas
as informagbes relevantes tiradas a partir de imagens de ressonancia
magnetica. Dentre essas informagdes, podem-se citar os valores da fungéo de
respiracéo, as coordenadas de diversos pontos e as curvas formadas por eles.

Os dados armazenados sfo entdo usados para tragar diversas imagens
poligonais das fatias do pulmao, sejam elas sagitais (obtidas de uma vista
lateral) ou coronais (obtidas de uma vista frontal). Esses poligonos podem ser
entdo “encaixados” para formar uma malha contendo a silhueta do pulméo
humano, a qual posteriormente dara origem a um sélido B-REP.

1.1 INTRODUGAO A RESSONANCIA MAGNETICA

Imagem de ressonancia magnética (MRIl) é uma técnica de imagem
usada principalmente no universo médico para produzir imagens de alta
qualidade do interior do corpo humano. MRI esta baseada nos principios de
ressonéncia magnetica nuclear (NMR), uma técnica spectroscopica usada por
cientistas para obter informagtes quimica e fisica sobre moléculas. A técnica foi
chamada de imagem de ressonancia magnética ao invés de imagem de
ressonancia magneética nuciear (NMRI) por causa das conotagBes negativas
associadas com a palavra “nuclear”. O termo “nuclear” também n&c & o mais

10

correto, uma vez que causa confusdo com radioatividade e ndo ha radiag&o

ionizante nesse método.

1.2 HISTORICO SOBRE RESSONANCIA MAGNETICA

Felix Bloch e Edward Purceli foram premiados com o Prémio de Nobel

em 1952, pois descobriram o fendmeno da ressonancia magnética em 1946. No
periodo enfre 1950 e 1970 foi desenvolvido NMR e utilizado apenas para
analises moleculares quimicas e fisicas.
Em 1971 Raymond Damadian mostrou que o relaxamento magnético nuclear
consegue diferenciar tecidos e tumores, motivando assim os cientistas para
considerar ressonancia magnética para descoberta de doengas. Em 1973 a
tomografia computadorizada baseada em raio-x (o CT) foi introduzida por
Hounsfield. Esta data é importante & linha do tempo da MRI porque mostrou
que hospitais estavam dispostos a gastarem grandes quantias de dinheiro para
equipamentos de imagem médica. A Imagem de ressonancia magnética foi
demonstrada primeiramente em amostras de tubo de teste pequenas no
mesmo ano por Paul Lauterbur. Em 1975, Richard Ernst propds imagem de
ressondncia magneética que utiliza codificagdo de fase e freqiiéncia, e
transformada de Fourier. Esta técnica € a base das técnicas de MRI atuais.
Alguns anos depois, em 1977, Raymond Damadian demonstrou a MRI
chamada de campo-focalizado de ressonancia magnética nuclear. Neste
mesmo ano, Peter Mansfield desenvolveu a técnica chamada de eco-planar
imagem (EPI). Esta técnica serd melhorada em anos posteriores para produzir
imagens a taxas de video (30 ms / imagem).

Edelsiein e pesquisadores demonstraram uma imagem do corpo que
utiliza a técnica de Emst, em 1980. Uma tinica imagem poderia ser adquirida
em aproximadamente cinco minutos por esta técnica. Antes das 1986, o tempo
de imagem foi reduzido a aproximadamente cinco segundos, sem sacrificar
muito a qualidade de imagem. No mesmo ano, estavam desenvolvendo o
microscopic de NMR que permitiu aproximadamente 10 micdmetros de
resolugdo em amostras de aproximadamente um centimetro. Em 1987 EP! foi

11

usado para mostrar imagens de em tempo real de um Unico ciclo cardiaco.
Neste mesmo anc Charles Dumoulin estava aperfeigcoando angiografia de
ressonancia magnética (MRA) que permitiu imagem de sangue corrente sem o

uso de agentes de contraste.

1.3 PRINCIP!O BASICO DE FUNCIONAMENTO

A teécnica fundamenta-se em trds etapas: alinhamento, excitaciio e
deteccéo de radiofreqiiéncia. O alinhamento se refere a propriedade magnética
de nucleos de alguns atomos, que tendem a se orientar paralelamente a um
campo magnético (como uma biissola em relagdo ao campo magnético da
terra). Por razes fisicas e pela abundéancia, o nucleo de hidrogénio (proton) é o
elemento utilizado para produzir imagens de seres bioldgicos (seres humanos).
Assim, para gue esses atomos sejam orientados numa certa diregdo, é
necessario um campo magnético intenso — habitualmente cerca de 1,5 Teslas
(30 mil vezes mais intenso que o campo magnético da terra). A etapa seguinie
e a excitagdo. Sabe-se que cada ndcleo de hidrogénio “vibra” numa
determinada freqliéncia proporcional ao campo magnético em que esta
localizado. Assim, em 1,5 T, o hidrogénio tem freqiiéncia de 63,8 MHz. O
aparelho emite ento uma onda eletromagnética nessa mesma fregiiéncia.
Existe uma transferéncia de energia da onda emitida pelo equipamento para os
atomos de hidrogénio, fendmeno conhecide como ressonéncia. Depois desta
fase a imagem ¢é produzida. Esta é a fterceira etapa: detecgdo de
radiofreqiiéncia. Quando os nlcleos de hidrogénio receberam a energia,
tornaram-se instaveis. Ao retornar ao estado habitual, eles emitem ondas
eletromagnéticas na mesma fregiiéncia (63,8 MHz — faixa de ondas de radio).
Entéo o equipamento detecta essas ondas e determina a posigdo no espaco e
a intensidade da energia. Essa intensidade é mosirada como “brilho” na
imagem, sendo utilizada a nomenclatura “intensidade de sinal”. Dependendo da
forma e do tempo em que excitamos os &tomos, as imagens poderdo ser mais
sensiveis a diferentes propriedades dos tecidos {Figura 1.1). Por exemplo,
temos as imagens T2, nas quais liquidos (liquor), desmielinizag8o e areas de
edema no tecido cerebral se mostram mais claros — alto sinal. Nas imagens T1,

12

a substancia branca ¢ mais clara que a cinzenta e areas com alto contetido
protéico e tecido adiposo em geral tem maior sinal - mais claras.

As imagens de RM t&m maior capacidade de demonstrar diferentes
estruturas no cérebro e tém facilidade em demonstrar minimas alterages na
maioria das doengas. As alteragbes morfolégicas s8o mais facilmente avaliadas
do que na Tomografia Computadorizada (TC), bem como ha maior
sensibilidade para doencgas desmielinizantes e processos infiltrativos. E também
possivel avaliar estruturas como hipocampos, nicleos da base e cerebelo (o
qual é de dificil avaliagdo na TC) — em alguns casos necessarios para pesquisa
de transtornos mentais. O aparelho é na verdade um tlinel com cerca de 1,5 a
2,5 metros de comprimento e produz um ruido durante a emissdo das ondas de
radiofreqiiéncia e procedimento de localizagdo do sinal. Esse ambiente é
limitante para claustrofobos, contraindicado para pacientes com marca-passo e
“clips” de aneurismas (ha outras contra-indicagbes formais).

Figura 1.1 - A) Reconstrugéo tridimensional, B) Axial T2 C) Coronal
T2.

13

1.4 RESSONANCIA MAGNETICA FUNCIONAL

A técnica de ressonancia magnética funcional - RMf — & semelhante a um
exame clinico dessa modalidade. As diferengas principais se devem a particularidade
de se obter informacgBes relativas a determinada fungéio cerebral. Neste sentido, &
necessario que haja uma forma controlada para executar essa fungso, por exemplo,
fluéncia verbal. Isto se faz necessario devido & caracteristica fundamental de exames
de neuroimagem funcional: comparagéo entre dois (ou mais) "estados cognitivos” do
cerebro. Essa comparagdo é feita por meio de métodos computacionais com técnicas
estatisticas complexas para analisar as imagens — o0 que faz com que o resultado do
estudo seja conhecido somente ap6s algumas horas. O principio da RMf é a
oxigenagdo sanglinea. Em areas com maior atividade neuronal, ha oferta de
oxigénio maior que o consumo local. Isto causa um aumento da conceniragio
regional de hemoglobina saturada de oxigénio (oxi-hemoglobina). Essa molécula tem
propriedades magnéticas diferentes da hemoglobina n3o saturada (desoxi-
hemoglobina). Assim, utilizando técnicas especiais (seqiiéncias BOLD) podemos
observar pequenas variagdes da intensidade do sinal devidas & ativacédo cerebral. E
possivel apresentar estimulos visuais, auditivos, sensitivos e mesmo oifativos e
gustativos.

A principal vantagem é a possibilidade de repetir varias vezes cada estudo no
mesmo paciente, ja que néo ha radiagdo ionizante ou necessidade de injecdo de
contraste. A realizagdo do exame é feita de modo a obter imagens do cérebro
durante a execucdo da atividade que se quer estudar e outras imagens controle,
onde essa tarefa ndo € executada. Desta forma o individuo realiza uma série de
atividades enquanto o aparelho adquire as imagens, as quais serio analisadas
posteriormente. Exemplificando, suponha gue o estudo seja para avaliar quais as
areas cerebrais se correlacionam com a tarefa de fluéncia verbal. lnicialmente,
durante 30 segundos, o individuo observa letras apresentadas visualmente numa
tela. A orientagéo € gerar palavras que se iniciem com a letra apresentada. Nos 30
segundos seguintes s&o apresentadas palavras, que devem ser simplesmente lidas
(imagens controle). Essas tarefas s&o repetidas, num totat de cinco ciclos, durante os
quais s&o adquiridas cerca de cem imagens de todo o cérebro (uma a cada trés
segundos).

14

Uma outra técnica — RMf relacionada a eventos — permite maior resolucdo
temporal e flexibilidade, mas esta além do escopo do presente artigo. Apos-a analise,
sd0 mostradas as areas que apresentaram aumento do sinal de RM nc momento de
geragao das palavras em relacdo as imagens adquiridas durante o conirole (leifura
passiva). A Figura 1.2 mostra o resultado desse tipo de exemplo, onde areas do lobo
frontal esquerdo, da porgéo superior do lobo temporal e do loho parietal deste lado
mostram correlagdo com a tarefa de fluéncia verbal. Atualmente, as aplicacdes séo
principalmente em pesquisa. A RMf, potencialmente, podera ser utilizada como dado
adicional para planejamento cirirgico ou para avaliar o impacio de determinado
procedimento ferapéufico no desempenho do paciente em determinada funcéo

cognitiva.

Figura 1.2 - Imagem de Ressonancia Magnética Funcional

15

2. IMAGENS REAIS

As imagens a serem analisadas vieram de exames de ressonancias
magnéticas. Existem dois anguios diferentes das imagens analisadas:

- Coronal: é a vista de frente do pulmao (figura 2.1).

- Sagital: é a vista de perfil do pulmé&o (figura 2.2).

E fundamental sabermos a diferenca entre estas, uma vez que toda a
modelagem se da em torno destas duas vistas. A partir destas imagens reais,
foram mapeados diversos pontos e curvas, bem como uma fungdo de
respiragdo para cada seqliéncia animada. Estes dados foram entio
armazenados em documentos no formato XML para cada sequéncia diferente.
Apos isso e tendo a funcéo respiragéo, foi feita a reconstrugdo do pulméo 3D
com base nos dados armazenados e na fungéo respiragdo. O algoritmo usado
para se fazer esta reconstrugéo sera descrito com mais detalhes mais adiante.
A Figura 2.3 ilustra uma imagem coronal, junto com os pontos e curvas que sdo

mapeados no documento XML.

Figura 2.1 — Imagem Sagital Figura 2.2 — Imagem Coronal

16

Figura 2.3 — Dados contidos no XML

17

3. DESCRICAO DOS DADOS EM FORMATO XML

Basicamente, cada arquivo XML contém dois tipos de informagbes
referentes a uma dada seqliéncia de imagens, que pode ser convertida em

uma animacao.

3.1. RESPIRAGAO

A primeira informacéo é a fungdo respiragdo associada a seqiiéncia em
questdo. Os dados estdo contidos como subelementos de um elemenio
chamado <basewave>, cada um contendo um valor referente a respiragéo em
um dado instante. Pode-se notar inclusive certa periodicidade nestes valores, o
que evidencia uma respiragdo normal. Abaixo temos um trecho de um

elemento <basewave> e alguns valores:

<basewave b="48" i="48" e="7" ix="71" fy="119" Ix="71" ly="169" w0="36">
<p value="-21" />
<p value="-21" />
<p value="-21" />
<p value="-21" />
<p value="-21" />
<p value="-21" />
<p value="-21" />
<p value="-22" />
<p value="-22" {>
<p value="-22" />
<p value="-22" />
<p value="-22" />
<p value="-22" />
<p value="-21" />
<p value="-19" />
<p value="-15" />
<p value="-1§" />
<p value="-20" />
<p value="-20" />

</basewave>

1R

3.2. IMAGEM DO PULMAO

A segunda informagido refere-se a propria imagem do pulméo,
representada apenas por um conjunto de pontos que compdem um contorno.

Primeiramente s&o definidos elementos <areas> Uma seqiiéncia pode
conter duas ou uma areas, dependendo desta ser coronal (visdo frontal do
térax), onde se pode ver ambos os pulmdes, ou sagital (visdo de perfil do
toérax), onde apenas é possivel enxergar a lateral de um pulmao.

Cada area & composta por curvas (<curve>). As curvas possuem um
atributo “cyclic” que pode assumir apenas os valores “0" ou “1”, sendo a curva
aberta, comeca e termina em pontos distintos, ou fechada, comega e termina
no mesmo ponto.

Por fim, cada curva &, logicamente, composta por uma série de pontos.
Estes s8o representados pelos diversos elementos <point>. Por tratar-se de
uma animagdo em 2D, cada elemento <point> possui diversos subelementos
denominados <frame>, cada um contendo atributos “x” e “y", representando,
portanto, as coordenadas daquele ponto em um dado instante da seqliéncia
animada. Ja para o caso de curvas aciclicas, estas possuem pontos inicial e
final dentro de outra curva ciclica anteriormente definida. Tal fato é
representado pelo mesmo elemento <point>, porém com atributos “ci”, para
indicar o indice de uma curva, e “pi”, indicando um ponto da curva “ci”. Abaixo,
pode-se ver uma seqliéncia com 3 curvas, sendo a primeira fechada e as

cutras duas, aberias:

<curve cyclic="1">
<point>
<poinf>
<point>
<point>
<point>
<point>
<pgint>
<point>
<point>
<point>
<point>
<point>
<point>
<point>
<point>
<point>
<point>

19

<point>
<point>
<point>
<point><fcurve>
<curve cyclic="0">
<point r="1" ¢i="0" pi="10" />
<point>
<point r="1" ci="0" pi="18" />
</curve>
<curve cyclic="0">
<point r="1" ci="0" pi="19" />
<point>
<p0int f-_n“'!" CI'=“0“ pi=ll8ll l>
<fcurve>

Tendo esses dados, é possivel entdo formar uma seqtiéncia respiratéria
de uma fatia separada do pulmio para cada documento XML. Cada fatia &
formada basicamente por 2 ou 3 curvas, sendo uma principal e fechada,
representando o contorno externo do pulmao, e 1 ou 2 curvas menores,
abertas, que formam as divisbes interlobulares do pulmao.

A partir dai, podemos passar para a construgdo de um modelo 3D do
pulm@o humano, fazendo-se a jungdo de diversas fatias (objetos
bidimensionais).

20

4. RECONSTRUGCAO DO PULMAO 3D

A reconstruco tridimensional do puim3o é feita da seguinte forma:

Para se reconstruir uma imagem tridimensional do puim3o, & necessario
fazer o “encaixe” de diversas fatias do pulmé&o, sejam elas coronais ou sagitais.
Como essas fatias néo pertencem necessariamente 8 mesma respiragio, deve-
se fazer uma padronizag3o, ou seja, escalamento, de modo a fazer com que
todas elas estejam compativeis umas com as outras para o encaixe.

4.1 ESCALAMENTO DAS FATIAS

Cada ponto da fatia, obtido dos documentos XML, é descrito por suas
coordenadas x e y (2D) em cada instante de tempo de uma dada seqiiéncia
respiratoria. Tendo isso, € possivel definir uma direcio de movimento para
cada ponto e associar uma escala a uma especifica posigio deste ponto ao
longo desta direg@o. A partir dai, tem-se entio uma associagio entre uma
escala numérica e a forma de uma determinada fatia do puim3o.

Foram definidos dois métodos de encaixe das fatias do puim&o para que
se possa fazer a reconstrugio do modelo tridimensional. S&o eles, o
escalamento por dimensfo de aresta vertical e por coordenada Y inferior.
Ambos os métodos, requerem primeiramente que se tenha uma fatia base,
sobre a qual todas as outras seriic montadas. E importante ressaltar que a fatia
base e as demais devem ser de tipos distintos, isto &, sobre uma fatia base
sagital s4o0 montadas fatias coronais, e vice-versa.

4.1.1 ENCAIXE POR DIMENSAO DE ARESTA VERTICAL

Neste modo de escalamento, traga-se primeiro uma reta vertical
imaginaria cortando as fatias, duas a duas, no ponto de intersecgdo. A partir
dai, toma-se uma medida da aresta vertical da fatia base e tentamos encontrar
uma escala que faz com que a aresta vertical da fatia a ser encaixada seja

21

igual a primeira. Por fim, é feita uma translacio da fatia secundaria para esta
cruze a fatia base.
Abaixo, na listagem 4.1, pode-se ver os dados obtidos utlizando-se esse

método de encaixe:

Coronal Slices

Slice# Scale Translation EdgeSize MinY MaxY
0 006 1.75 81.66 014 8180
1 -0.04 -0.25 84.63 558 9021
2 004 423 87.57 3.92 9150
3 -0.08 -0.29 80.77 10.51 101.28
4 -0.03 228 84.12 9.37 103.50
5 -0.05 1.20 97.64 11.40 109.04
6 -0.09 -1.86 101.40 15.00 118.40
7 0.06 077 105.37 12.66 118.03
8 -0.23 -3.17 109.83 16.67 126.50
9 -0.13 082 114.57 1270 127.27
10 -0.09 0.16 119.02 1270 131.72
11 -0.08 -1.31 122.89 13.36 136.26
12 -0.056 3.61 126.35 7.30 133.65
13 -0.08 -1.70 129.63 11.06 140.69
14 -0.12 -1.59 132.45 899 14144
15 016 -2.94 134.47 801 14248
16 0.24 527 135.99 766 143.66
17 -0.22 -1.89 137.14 132 13846
18 -0.27 -3 137.82 0.02 137.83
Sagittal Slices 1

Slice# Scale Translation EdgeSize MinY MaxyY

0 0.04 8.08 61.47 -12.55 48.92
1 -047 -4.97 70.15 471 7486
2 -0.14 0.04 76.21 210 78.31
3 -0.14 0.00 81.66 189 8355
4 -0.26 -3.92 85.67 452 80.20
5 -0.29 -5.78 86.61 530 91.92

Sagittal Slices 2

Slice# Scale Translation EdgeSize MinY MaxyY

0 -0.11 649 103.38 -10.561 92.88

1 -0.20 4.00 117.41 -5.15 112.26
2 -0.12 179 128.18 -2.563 125.65
3 -0.14 0.00 137.82 -3.90 133.92
4 -0.07 1.01 145.04 -8.77 136.26
5 -0.22 492 151.41 -8.27 14314

Listagem 4.1 — Dados Obtidos por Encaixe por Dimens&o de Aresta Vertical

4.1.2 ENCAIXE POR COORDENADA Y INFERIOR

Este método se assemelha muito ao anteriormente descrito, com a
diferenca de que, ao invés de se igualar a dimens&o da aresta vertical, faz-se o
mesmoe com a coordenada y inferior.

Abaixo, na listagem 4.2, temos os dados referentes a esse método de

encaixe:

Coronal Slices

Slice# Scale Translation EdgeSize MinY MaxyY

0 003 0.00 80.70 1.07 8177

1 -0.01 0.00 85.69 447 90.16

2 -0.04 -0.00 84.23 7.26 9149

3 -0.05 -0.00 91.97 929 101.26
4 -0.06 -0.00 92.78 10.70 103.48
5 0.05 -0.00 97.43 11.61 109.04
7] -0.05 0.00 104.42 1214 116.55
7 004 000 105.63 1240 118.03
8 -0.10 0.00 113.92 1244 126.35
9 -0.11 0.0 115.04 1222 127.27
10 -0.06 -0.00 120.01 1.72 13173
11 -0.04 0.00 125.29 10.88 136.17
12 -0.08 -0.00 123.64 970 133.34
13 -0.04 -0.00 132.65 8.12 140.77
14 -0.08 0.00 135.43 6.12 14155
15 -0.08 0.00 138.71 377 14248
16 -0.10 0.00 142.50 1.07 14357
17 -0.14 -0.00 140.28 -1.92 138,36
18 -0.13 -0.00 143.13 -5.25 137.88

Sagittal Slices 1

Slice# Scale Translation EdgeSize MinY MaxY

0 -0.25 -0.00 53.94 -5.22 48.72
1 -0.24 0.00 74.46 -1.02 73.44
2 -0.12 -0.00 77.19 137 78.56
3 -0.12 0.00 82.57 1.07 8364
4 -0.12 -0.00 91.82 -0.30 9162
5 -0.07 -0.00 94.73 -1.42 ©93.30

Sagiftal Slices 2

Slice# Scale Translation EdgeSize MinY MaxY

0 -0.20 0.00 99.54 -5.99 93.55

1 -0.26 0.00 115.26 -2.90 11236
2 -0.12 -0.00 127 .91 -2.27 125.64
3 -0.12 0.00 139.23 -5.25 133.98
4 -0.07 -0.00 145.38 -911 136.27

5 -0.11 -0.00 157.35 -14.21 143.14

Listagem 4.2 — Dados Obtidos por Encaixe por Coordenada y Inferior

4.1.3 ANALISE DOS RESULTADOS

Abaixo, encontra-se um grafico (Grafico 4.1) com uma comparagio entre
os dois métodos para uma determinada fatia. No eixo das abscissas, temos o
instante de tempo, enquanto gue nas ordenadas, temos a escala calculada

segundo cada um dos métodos.

Comparagiao entre Métodos de Encaixe

— Dimensao de Aresta
| — Coord. y Inferior J

Escala

R A I

Tempo

Grafico 4.1 — Comparacgo entre Métodos de Encaixe

Conforme pode ser facilmente observado, tantos pelas listagens como
pelo grafico, a diferenca na escala entre os dois métodos & muito pequena,

podendo entéo ser utilizado qualquer um sem que o resultado final do modelo

fique gravemente prejudicado.

24

4.2 CONSTRUGAO DO MODELO 3D

Antes de iniciar o processo, é preciso que se tenha uma fatia especifica
que sera usada como base para o encaixe das demais. Podemos chegar assim
a mais 2 métodos de montagem do modelo tridimensional, de acordo com o
tipo da fatia base.

4.2.1 FATIA BASE SAGITAL

Neste meétodo, o programa parte de uma fatia do tipo sagital para iniciar
o encaixe das demais fatias (coronais). Feito isso, 0 programa seleciona todas
as fatias coronais que cortam esta fatia central e estas sdo enfileiradas, dando
inicio a silhueta do pulmé&o 3D. Para que se tenha uma modelagem suave, os
pontos ja conhecidos s&o multiplicados por uma escala, o que torna as
dimensdes de cada fatia compativeis entre si, evitando assim diferencas
bruscas entre uma fatia e sua vizinha (lembre-se de que as fatias n&o foram
obtidas de uma mesma respiragdo). Esta escala deve ser calculada por
qualquer um dos métodos descritos anteriormente, “dimensdo de aresta
vertical” ou “coordenada y inferior”. A figura 4.1 ilustra essa série de fatias
coronais.

Uma vez com as fatias coronais, deve-se fazer um processo semelhante
com as fatias sagitais. Ao invés de se utilizar uma fatia central como padrio,
desta vez s&o usadas a primeira e dltima fatias coronais da lista previamente
montada. Para cada uma das duas, repete-se o procedimento de enfileirar as
fatias sagitais, encaixando-as devidamente na fatia coronal base através de
uma nova escala calculada para cada fatia sagital. Uma diferencga importante,
no entanto, € a realizacio de um corte, o qual deixa visive! apenas a area
externa a fila de fatias coronais. O resultado pode ser observado na figura 4.2.

25

e | -
tff’
‘iﬁffrﬁ

"‘ff}r‘nﬂthﬂ‘

Sl
N

5

tuh&%ff-

qt..ﬂﬁfﬂfﬂ?.?g

‘w.

Figura 4.2 — Fatias Sagitais Cortadas

Figura 4.1 — Fatias Coronais

Abaixo, na figura 4.3, podemos ver o resultado em uma ilustragio com

ambas as fatias coronais e sagitais juntas.

26

Figura 4.3 — Silhueta Composta do Pulmao

4.2.2 FATIA BASE CORONAL

O processo agora € inverso ao descrito acima, ou seja, usa-se uma fatia

base coronal, sobre a qual sdo enfileiradas as fatias sagitais. Este processo

consiste também em usar uma escala, calculada, sobre cada fatia sagital, para

gue esta se encaixe adequadamente sobre a coronal base.

Em seguida s&o encaixadas as fatias coronais sobre a primeira e Ultima

fatias sagitais, também devidamente escaladas e cortadas, como no método

anterior.

As figuras 4.4, 4.5 e 4.6 ajudam a ilustrar esse processo:

27

28

29

5. DIVISOES INTERLOBULARES

Os pulmdes podem ser ainda subdivididos em estruturas chamados
Iébulos, o qual se acredita que possuam um movimento independente entre si.
Este € um dos fendbmenos que se pretende observar com uma modelagem 3D
animada do 6rgdo. O pulméo direito encontra-se dividido em tr&s I6bulos
enquanto que o esquerdo em dois,

Assim sendo, além de tracar um contorno da silhueta extemna de pulmao,
como foi mostrado logo acima, devem ser tragadas também as linhas que
formam as divisdes entre os I6bulos, isto &, as divisbes interlobulares. Uma
amostra deste tipo de curva pbde ser vista anteriormente, na figura 3. Porém
como pode ser visto na mesma ilustracdo, trata-se de uma curva aberta e
formada por apenas 3 pontos, sendo que dois deles s#o referéncias a pontos ja
pertencentes & curva externa do puimao. Neste caso, ent&o, esses 3 pontos
foram usados como base para se tragar uma curva de Bézier, ao invés de
serem simplesmente ligado, como foi feito anteriormente.

Algumas alteragdes no codigo tiveram de ser feitas para tornar possivel
a exibicdo destas novas curvas. Na classe TState, foi necessério adicionar duas
novas estruturas de dados para armazenar os novos poligonos. A listagem a
seguir contém a classe TState com suas alteragGes em destaque:

#include "ynupolyg.h"

class TState |

public:
TState() {};
~Tstate{) {};

float getTimeL(void) const { return timel; }
float getTimeF(void) comst { return timef; }
fleat getMedxL{void) const { return medxh; }
float getMedyL{void) const { return medyL; };
float getMedxF({void)} const { return medxF; }
float getMedyF(void)} const { return medyF; }
float get8ize(void) const { return size; };

void setTimeL(float et) { timel = et; };
void setTimeF(float et} { timef = et; };
vold setMedxL(float exl) { medxL = exl; };
void setMedyl{float eyl) { medyL = eyl; };
void setMedxF{float exf) { medxF = exf; };
void setMedyF(float eyf} { medyF = eyf; };
void setSize(float es} { size = es; }

void pushF (TPolygon pp)} { lstPolyF.push back{pp); };
void pushLl(TPolygon pp) { lstPolyLl.push back(pp); };
void pushL2(TPolygon pp} { lstPolyL2.push back(pp}; }i:

‘/*t
* Pushes an interlcbular polygon

30

&/
void pushinterLobk(TPolygon pp, int curvelndex}

if {ecurveIndex == 1} {
lstPolyInterlobl.push back (pp};
} else if {curveIndex == 2} |

lastPolylInterLob2.push_back(pp) ;

}
H

vector<TPolygon> *getPolyF(void} { return ElstPolyF; };
vectoreTPolygons> *getPolyLl(void) { return &lstPolyLl; };
vector<«TPolygons> *getPolyLZ (void} { return &lstPolyl2; };
AL

* Gets the list of interlcbular polygons

*/

vector<TPolygon> *getPolyInterlob(int curveIndex)

if (curveIndex == 1)
return &lstPolylInterlobl;
} eise if {curveIndex == 2)
return &lstPolyInterLobZ;
}

return NULL;

}

TPolygon & getPolyF0{void) { return 1stPolyF[0]; };
TPolygon & getPolyFN(void) { return lstPolyF[lstPolyF.sizel} - 1]; }i

private:
float timef, timel, size;
float medxl, medylL, medxF, medyF;

vector<TPolygon:> lstPolyF;
vector<TPolygon> lstPolyLl;
vector<TPolygon> lstPolyl2;

/*t
* Vector with interlobular polygons
*/
vector<TRolygon: 1stPolyInterlLobi;
vector<TPolygon> lstPolyInterLob?;

Além disso, no programa principal, a fungfio anaiyzingFrontaiimages, a qual
ja foi descrita em detalhes anteriormente, também sofreu algumas alteragoes,
como mostrado abaixo:

/*i
* Gets the interlobular polygon(s)
*
/
ThreasInTime *currentArea = FSlices[k]-sgetArea(area);
int nInterLobCurves = currentArea->getNumber0fCurves() - 1;
TPolygon interLob[2};
for (int i = 0; i < nInterLobCurves; i++) {
F5lices [k] -»calculateS3DPolygon (area, i + 1, scaled);
interlob[i] = FS5lices[k] -»getPolygon{area, i + 1);

AL

* Translates and pushes interlobular polygon into state
*/

interLob[i}.translate(0, - maxxF + maxxL) ;

state-spushInterLob{interLob{i], i + 1};

Com isso, o resultado obtido pode ser observado na Figura 5.1,
utilizando-se ¢ modelo 3 d com fatia base sagital (divisées sobre as coronais), e
31

5.2, com fatia base coronal (divisbes sobre as sagitais), logo abaixo (note que
as imagens das fatias sagitais n&o foram exibidas para facilitar a visualizagio
das divisoes interlobulares, em vermelho):

i ‘_‘

AR

ol A
. r L "

s

Figura 5.1 ~ DivisGes Interlobulares (Fatias Coronais)

Figura 5.2 — Divisdes Interiobulares (Fatias Sagitais)

33

6. PROGRAMA AUXILIAR PARA VISUALIZACAO DO MOVIMENTO

DAS FATIAS (LUNGPLOT)

Foi iniciado também o desenvolvimento de um software auxiliar, com o
intuito de permitir a visualizagio de caracteristicas de cada fatia,
separadamente, para cada valor de escala. Com isso, & possivel ver
claramente a posicdo de cada ponto e o formato e tamanho da fatia separada
em uma escala desejada. O programa foi desenvolvido utilizando-se a
linguagem Java, principaimente devido 2 facilidade que esta proporciona no
desenho de interfaces graficas ao usuério. Para tal foi utilizada a biblioteca
Swing. A este programa, foi dado o nome de LungPlot vers3o 1.

Afigura 6.1 ilustra a interface gréafica deste programa.

34

£ Lung Plot A =|0] x|
Coronak: {443 fcor) w Saggital: 409 (sag) ~
& No Scaling
Min ¥ Scaling
Edge Scaling
Show Coronal-Saggital Intersection || Show Limits ————{_} scale: 0.0
Figura 6.1 — LungPlot — Interface Grafica (Escala 0)

Conforme pode ser visto, a aplicacdo consisie basicamente em dois
controles do tipo Combo Box, no topo da janela, onde o usuario pode escolher
dentre as fatias coronais e sagiiais disponiveis para plotagem.

No ceniro, temos a exibicdo das imagens selecionadas, sendo as fatias
coronais (pulmao esquerdo e direito) na parte superior, e a sagital logo abaixo.

Na parte inferior da janela, ha uma barra de rolagem, através da qual se
pode variar o fator de escala dos pontos o que afeta imediatamente o desenho
mostrado. Na figura 6.1, acima, temos a imagem de uma fatia sagital e coronal,

35

para uma escala 0, enquanto que logo abaixo, na figura 6.2, pode-se ver a
diferenga, quando variamos a escala para 1.15.

£ Lung Plot B -|O] x|

Coronal: ‘443 (cor) ~ Saggital: [_409 (san) ‘r_

& No Scaling

Min Y Scaling

Edge Scaling

Show Coronal-Saggital Intersection [ShowlLimits —) scale: 1.15

Figura 6.2 — LungPlot — Interface Grafica (Escala 1.15)

36

Uma das primeiras contribuigbes que o programa proporcionou, foi a

percepgdo de que para escalas muito pequenas (menores que -0.5,

principalmente), o formato da fatia do pulmdo comecga a ficar extremamente

deformado, perdendo assim o sentido em utiliza-las a partir deste valor. Um

exemplo deste fendmeno pode ser visto abaixo, na figura 6.3.

= Lung Plot

Coronal: 443 {cor) ¥ Saggital: (407 (sag) ~

Show Coronal-$Saggital ntersection | | Show Limits =L J

® No Scaling

MinY Scalinq

Edge Scaling

scale: -0.55

37

Figura 6.3 — Imagens Deformadas em escala -0.55

Alem disso, existem ainda uma série de funcionalidades implementadas
nesta aplicagdo, e que permitem uma analise de alguns detalhes importantes
das imagens das fatias do puimé&o. A seguir, apresentaremos uma descrigdo
detalhada de cada uma destas funcionalidades.

6.1 INTERPOLACAO POR CURVAS DE BEZIER

Primeiramente, deve-se ressaltar que todas as curvas plotadas séo
aproximadas por Bezier. Para se obter uma curva de Bezier entre dois pontos,
s&0 necessarios certo nimero de pontos de controle, sendo no minimo dois, os
quais definem o ponto de partida e de chegada da curva. Demais pontos entre
os dois primeiros sdo usados para determinar a diregéo da curva, portanto néo
s&o pontos pertencentes a curva.

A seguir, nas figuras 6.4, 6.5 e 6.6, temos um exemplo rapido de curvas
de Bezier que possuem 2, 3 e 4 pontos de controle, respectivamente.

0P1
op 0
t=0 PO i=.25
Figura 6.4 — Bezier (2 Figura 6.5 — Bezier (3 pontos de controle)
pontos de controle)

38

Py t=.25 op,

Figura 6.6 — Bezier (4 pontos de controle)

No programa, a cada dois pontos consecutivos, é feita uma curva de
Bezier entre os mesmos, porém, para isto, & necessario encontrar pontos de
controle entre os dois primeiros. Para conseguir estes pontos de controle, sdo
usados, adicionalmente, o ponto imediatamente anterior ac ponto de partida e o
imediatamente posterior ao de chegada, totalizando em quatro pontos, com os
quais € possivel definir a direcdo da curva nos pontos inicial e final.

Uma vez obtidos os pontos de controle, basta obter uma série de pontos

da curva de Bezier, variando um parametro { de 0.0 a 1.0, segundo a seguinte

equacgio:

B(t)=Po(l —1)* + 3Py#(1 —t)* + 3P:t*(1 -) + P3* | t € [0, 1].

O namero de pontos a serem obtidos para tragar a curva esta claramente
definido no programa LungPlot por uma constante de nome BEZIERPOINTS,

na classe Slice, como mostrado no trecho logo abaixo:

public static final int BEZIERPOINTS = 50;

Atualmente, estamos trabalhando com 50 pontos, 0 que permite uma
curva bastante suave e que ndo sobrecarregue demais a capacidade de
processamento do computador, lembrando que quanto maior o namero de
pontos, mas custosa sera a operagdo de desenho da curva. Portanto, para
computadores mais simples ou mais avangados, talvez seja recomendavel

variar o valor desta constante entre 10 & 100.

39

6.2 EXIBICAO DOS LIMITES DE MOVIMENTO

Ha também um “checkbox” intitulado de “Show Limits® que quando
marcado, ira ativar a exibigdo dos limites da fatia em questao, que neste caso
serao quando a escala tiver o valor de -1.0 e +2.0. Assim pode-se ter uma idéia
de toda a amplitude do movimento da fatia numa respiragso.

Esta funcionalidade esta ilustrada na figura 6.7, logo a seguir. Nesta
figura, podemos ver as fatias escaladas com o limite maximo em azul e no
limite minimo na cor rosa. A imagem principal, com a escala atual, ainda
permanece no desenho, em preto.

40

€ Lung Plot / - —]U’ﬂ
¥ No Scaling
- -
/
!
¥
Min Y Scaling
Edge Scaling
|| Show Coronal-Saggital Intersection v/ Show Limits - — *,‘ scale: 0.79
Figura 6.7 — Exibigdo dos Limites de Movimento

6.3 EXIBICAO DAS INTERSECCOES ENTRE SAGITAIS E CORONAIS

As funcionalidades que mais complexas de se implementar e talvez, as
que deram resultados mais concretos, foram a exibigao das intersecgdes entre
fatias sagitais e coronais, e sua associacéo aos diferentes métodos de

escalamento entre elas, que sera descrito na segéo 6.4.

41

Ao lado do “checkbox” “Show Limits”, existe um outro “checkbox”,
intitulado “Show Coronal-Saggital Intersection”, o qual, quando clicado, ativa
imediatamente a exibicdo de uma série de pontos coloridos sobre as imagens
sagital e coronal que j& estiverem plotadas. A figura 6.8 ilustra esse novo modo
de exibicao.

Na figura, temos uma série de pontos coloridos, cada um com um
significado especifico. Primeiramente, deve-se observar que todos os pontos
podem ser divididos em grupos de quatro ao longo de uma linha vertical, tanto
para aqueles sobre a fatia coronal quanto sobre a sagital. Esses grupos de
quatro representam cada um, a intersecgdo de uma fatia do tipo oposto sobre a
fatia principal, isto é, na imagem superior, coronal, 0s 6 grupos de 4 pontos
coloridos correspondem a intersecgdio das 6 fatias sagitais disponiveis, e vice-
versa.

Com relagdo as cores, azul, verde e amarelo, a fungio delas &
simplesmente diferenciar entre as curvas a qual se referem (curva externa,
interlobular superior e interlobular inferior). J& os grupos de 4 pontos em
vermelho, indicam os pontos de intersecgédo entre as duas fatias selecionadas
para exibigdo, ou seja, na figura 6.8, estdo selecionadas a fatia coronal 441 e
sagital 407, portanto, os pontos vermelhos sobre a imagem coronal
representam a interseccéo com a fatia sagital 407, enquanto que aqueles sobre
a imagem sagital, sdc a intersecgio com a coronal 441.

Um fato importante de se observar aqui, & que para fatores de escala
préximos de 0.0, os pontos das intersecgdes se encontram muito préximos da
prépria curva plotada, principalmente para o poligono principal, que representa
a sithueta externa do pulmé&o. Porém conforme se varia o fator de escala, tanto
para cima como para baixo, vemos que essas intersecgdes assumem uma
posicéo aleatoria, ndo mais semelhante & curva plotada. Este fenénemo pode
ser percebido na figura 6.9, onde mostramos as mesmas fatias da figura 6.8,
porém com uma escala muito maior.

No entanto, este tipo de situagdo é facilmente resolvido com o
escalamento auxiliar das fatias secundéarias, como ja foi explicado
anteriormente nas se¢des 4.1.1 e 4.1.2, aplicado ao projeto em Visual C++ em
3D. A se¢do 6.4 ilustra este mesmo processo de escalamente, porém como
uma funcionalidade do software LungPlot.

472

£ Lung Plot

% No Scafing

' Min Y Scaling

. Edge Scaling

v Show Coronal-Saggital Intersection [) ShowLimits = - gcale: 0.15

Figura 6.8 — Intersecgfes entre Sagitais e Coronais (escala 0.15)

43

£ Lung Plot L \ _II:I|_

™ No Scaling

Min Y Scali

Eddge Scaﬁw

[»! Show Coronal-Saggital Intersection [Show Limits - scale: 1.34

Figura 6.9 — Intersecges entre Sagitais e Coronais {escala 1.34)

6.4 DIFERENTES METODOS DE ESCALAMENTO

44

Conforme visto na seg¢fo anterior, quando se estdo sendo exibidos os
pontos de interseccdo entre coronais e sagitais, hd um alto grau de
aleatoriedade entre os pontos dos dois tipos de fatias (coronal e sagital)
quando o fator de escala fica muito distante de 0.0. Também ja foi comentado
que isto se deve ao fato de que as fatias foram obtidas por seqiiéncias de
ressonéncia magnética independentes umas das outras, 0 que faz com que
cada uma se comporte diferentemente para um valor de escala. Por isso, foram
introduzidos dois métodos de encaixe descritos nas segées 4.1.1 € 4.1.2, que
visam determinar uma escala diferente da escala principal para as fatias
secundarias, de maneira que se consiga um melhor encaixe no poligono
principal. Assim sendo, temos os botdes de radio no canto direito da janela do
LungPlot, onde o usuario pode escolther entre os métodos de escalamento e
visualizar o resuliado imediatamente na figura plotada. Até o momento,
estdvamos trabalhando no modo “No Scaling”, ou seja, sem escalamento
nenhum, o que faz com que fodas as curvas sejam escaladas pelo fator de
escala principal, escothido com a barra de rolagem, no canto inferior da janela.

Quando mudames o modo de escalamento para “Edge Scaling”, obtemos
0 escalamento por dimenséo de aresta vertical, ja descrito na segéo 4.1.1. O
resultado deste modo pode ser visualizado na figura 6.10.

43

£ Lung Plot

Coronal: 441 (car) ~ Saggital: 407 {sag) ~

¥| Show Coronal-Saggital Intersection || Show Limits ===

405 transiation: 4,39
4086 translation: -4,77
407 transiation: -11,79
408 franslation; -9,22
408 translation: -14,37
418 1ranslation; -10,28

434 translation: 15,37
435 franslation: 28,60
436 translation: 36,56
438 translation; 14,78
439 franslation: 11,63
440 translation: 14,38
441 translation: -139,08
442 translation: 15,32
443 translation; 8,49
444 franslation: 12,72
445 translation: 7,65
446 translation; 11,29
447 fransiation; -1,52
448 translation: 1,55
448 translation; -2, 43
450 translation; 2,73
451 translation; 5,43
452 franslation; 2,61
453 translation: 1,55

=} scale: 1.4

No Scaling

Min Y Sca

® Euge Scal

Figura 6.10 — Escalamento por Dimensao de Aresta

Conforme se pode ver facilmente na figura 6.10, mesmo para uma escala

de 1.4, os pontos de intersecgdo inferior (amarelo) e superior (azul), estéo

muito proximos da curva principal. Isto se deve ao fato de que o programa

encontra uma escala secundéria para que ajuste as dimensBes da aresta

vertical da intersecgéo das fatias, duas a duas, e depois aplique uma translagao

na vertical, de forma que o ponto inferior das duas se iguale. Esta translagéo

também € mostrada na janela do programa, para todas as fatias disponiveis.

A outra opgdo de escalamento também disponivel é o escalamento por

coordenada Y inferior, descrito na se¢do 4.1.2, e que pode ser ativado ao se

46

clicar na opgéo “Min Y Scaling”. A figura 6.11, abaixo, ilustra o resultado obtido

com esta opcao.

£ Lung Plot T _“3

Coronal: 441 (cor) | » Saggital: 407 (sag) |+

No Scalmi

@' Min Y Scal

Edge Scal|

[v] Show Coronal-Saggital Intersection [Show Limits ———————=——1_} scale: 1.4
Figura 6.11 — Escalamento per Coordenada Y Inferior

Neste modo, o aspecto mais relevante, € que apenas os pontos de
intersecgéo inferiores (amarelo) apresentam uma grande semelhanca com a
fatia principal. Ao contrario do que acontecia com o escalamento por dimenséo
de aresta, os pontos de intersecgdc superiores ndo se aproximam tanto da

curva plotada, pois neste caso, o processo somente garante que 0s pontos

47

inferiores se aproximem, ndo fazendo qualquer observagéo para a dimens&o da
aresta ou nenhum tipo de translacéo.

48

8. CONCLUSAO

Pode-se dizer que os resultados obtidos nas diversas etapas do
desenrolar deste projeto foram bastante satisfatérios e acabou por fornecer
uma série de dados e informag@es importantes para a continuidade do projeto
da modelagem CAD de um pulm&o humano 3D animado.

Um dos principais desafios da modelagem tridimensional consistia no fato
de que se partia apenas de imagens bidimensionais de varias secgbes
diferentes do pulm&o. Estas fatias eram provenientes de exames de
ressonancia magnética e o maior obstaculo na montagem do modelo 3D residia
no fato de que cada uma destas fatias apresentava um comportamento
completamente independente umas das outras. A solugfio encontrada para isto
foi o processo de escalamento e encaixe destas fatias.

Inicialmente, existia apenas uma forma de reconstrugéic 3D e uma Gnica
métrica de escalamento entre as fatias, o que fornecia apenas um resuitado.
Adicionalmente foi implementado um novo método de reconstrucdo 3D e uma
nova métrica de escalamento, o que permitiu ao todo 4 combinagdes de
resultados para serem comparados e analisados.

Além disso, a exibigdo das divisbes interlobulares tornou-se realidade no
modelo 3D, o gque deu-nos a chance de observar seu comportamento e
constatar que, infelizmente, as linhas interiobulares das fatias do puimao nao
se alinhavam perfeitamente, o que tornava impossivel a criagdo de uma
superficie interlobular coerente para o modeio tridimensional.

O programa LungPlot, desenvolvidoc em Java, prestou-nos grande
contribui¢&o no estudo das fatias pulmonares individualmente, algo que néo era
possivel até entdo com o software em C++, o qual apenas permitia uma
visualizag&o 3D do modelo ja reconstruido. Com a imagem separada das fatias,
foi possivel, num primeiro momento, constatar que, para determinadas escalas,
a silhueta do pulmdo se tornava bastante deformada, perdendo assim seu
formato caracteristico, o que de certa forma inviabilizava a utilizagdo da mesma
sob tais condigdes. No entanto, a maior contribuicdo conseguida, foi que na
plotagem das intersecgdes entre fatias sagitais e coronais, mesmo quando

49

submetidas aos dois tipos de escalamento descritos. Analisando os resuitados
que o LungPlot nos forneceu neste aspecto, foi possivel concluir que o
escalamento funciona perfeitamente bem para a silhueta externa do puiméo.
Porém, nas divisbes interlobulares 0 mesmo n&o ocorre. O desalinhamento dos
pontos de intersecg¢do entre as curvas interiobulares das fatias sagitais e
coronais evidenciou de maneira muito mais clara este problema que ja havia
sido percebido no modelo tridimensional. Ficou bastante claro que isso era
causado pelo fato de que as métricas de escalamento utilizadas se
preccupavam apenas com um perfeifo alinhamento da silhueta externa do
pulméo, aplicando a mesma escala para os pontos pertencentes as curvas
interlobulares das fatias. Uma das possiveis solugtes para este problema seria,
talvez, a realizagdo de um escalamento independente para as divisdes
interlobulares daquele feito para a silhueta externa, o qual garantisse também o
perfeito alinhamento enire as interlobulares, e que por fim, permitisse a
modelagem tridimensional destas superficies de maneira suave o suficiente.
Isso permitiria entdo o estudo das propriedades dos iébulos do pulméo
separadamente, tais como o célculo do volume e érea superficial, para cada
instante da respiracdo, algo que ainda representa um desafio para a area
médica.

Este projeto possibilitard ainda, uma continuagio no estude do puimio
humano e suas propriedades. Tendo validado os métodos de escalamento para
a reconstrugéo do pulm&o em 3D com o LungPlot. O préximo passo neste
momento seria tentar reconstruir o pulmao utilizando novas técnicas como, por
exemplo, utilizando fatias horizontais.

50

9. REFERENCIAS BIBLIOGRAFICAS

[1] TSUZUKI, M.S.G.; TAKASE, F.K; GOTOH, T.. KAGEl, S
ASAKURA, A.; INOUE, T.; IWASAWA, T. - 4D Lung Modelling from
Sequential MRl Base don Respiratory Motion Analysis, submetido a
Computer Aided Design - Janeiro/20086.

[2] TSUZUKI, M.S.G. - Introdugdo ao CAD/CAM, Apostila do Curso de
PMR2520.

[3] SOBOTTA, J. - Aflas de Anatomia Humana, Vol 2, Ed.
GUANABARA KOOGAN, 212 edigdo - 1993.

[4] STROUSTRUP, B. — The C++ Programming Language - Ed.
Addison-Wesley Professional, 3rd Edition —~ Junho/1997

[5] |InformacBes gerais sobre a Dbiblioteca OpenGL em
hitp://www.opengl.org, acessado em Abril/2008.

{6] SCHREINER, D.; WOO, M.; NEIDER, T.; DAVIS, T. - OpenGL®
Programming Guide: The Official Guide to Learning OpenGL®, Ed.
Addison-Wesley Professional, 52 edigdo — Agosto/2005

[7] SCHREINER, D. — OpenGL® Reference Manual: The Official
Reference Document to OpenGL, Ed. Addison-Wesley Professional, 42
edicédo — Margo/2004

[8] HORNAK, Joseph P. — The Basics of MRI — 1996

51

ANEXO A - LISTAGEM COMPLETA DO CODIGO

A sequir, a listagem completa do codigo comentado do programa
desenvolvido em Java, devidamente dividido em classes.

CLASSE Point

Classe responsavel por armazenar informacdes relativas a um ponto no
plano (coordenadas x e y e seus respectivos Deltas).

/*******************k***********i**i*********************i*t*i***********/
! e
W s

* H =1 H i e ! W

* Lexandre Margques I

x
!

/****************************i***********************Q***************t***/

package LungPlot;
import java.lang.Math;

Foi data: % and ¥ coordinatesn and delta
public class Point {

P Coordinate
private double x, ¥y

// Point delt
private double deltaX, deltaY;

public Point{} {
this.x = 0;
thiB.y = 0;
this.deltaX
this._deltaY¥

nr
oo

public Point{douwble x, double y, double deltaX, double delta¥) {
this.x = X;
thiE.Y - Yy
thig.deltaX = deltaX;
thig.deltaY = deltaY;

public Point(Point p) {
thia.x = p.getX{);
this.y = p.get¥{);
this.deltaX = p.getDeltaX();
this.deltaY = p.getDelta¥(};

publiz double getDeltaX() {
return deltaX;

public void setDeltaX{double deltaX)} {
this.deltaX = daltaX;

public doubls getDelta¥{)} {
raturn deltay;

52

public void setDeltaY(double delta¥) {
this.delta¥ = deita¥;

}

public double getX() {
return x;

}

publiz void setX(double x} {
this.x = x;

}
public double getY() {
retuzn y;
}
public veid setY{double y} {
this.y = y;
}
Aclde ts5 A F rwo vector:

/ WO I 5 4 - W
public Point add{Point p} {
double x = thia.x + p.getX({};
double y = this.y + p.get¥(};
double deltaX = this.deltaX + p.getDeltaX();
double delta¥ = this.delta¥Y + p.getDelfa¥{);
retura new Point(x, y, deltaX, deltay);

M ip n 4 scalar o ue
publie Point times(double s) {

return new Point {s8*x, s*y, s*deltaX, s*delta¥);
}

Does sa: product between two points {vectors)
public double scalar(Point p) {
double result = getX()*p.getX(} + get¥{)*p.get¥();
return result;

Ce ates bLhe lengtn Vet
public double length{} {
return Math.sgrt(Math.powi{x, 2} + Math.powl(y, 2});
}

Mormalizss the vectc
public void normalize({) {
double len = length(};
X = x/len;
¥y = y/len;
deltaX = deltaX/length();
deita¥ = delta¥/length();

53

CLASSE Polygon

Classe que contém dados de um Poligono, tais como seus pontos.

/*******************************wﬁ****w**********************************/
L

&
f ¥ HGRES: (e Henrigue Ke:ki X

sxandre Margques L
B

*
/**i*******************/

package LungPlot;
import java.util.Vector;

y 3
public class Polygon {

: =

private Vector<Point> points;

15 group of

]

private boolean cyclic;

public Polygen{) {
points = new Vector<Points(};
cyclic = truae;

}

public Vector<Point> getPeints(} {
return points;
}

Arlds point bo khe polygon
public void pushPoint (Point p) {
points.addElement {p) ;

Reatur hie num £ poin POLYGOT
public int getSize() |
return points.size();

public void clear{} {
peints.clear();

public boolean isCyclic{) {
raturn cyelic;

public void setCyclic(boolean cyclic) |
thie.cyclic = cyclic;

public double getMin¥{double x, double scale} {
double min¥ = 1000;
Point prev;
Point next;
for {int i = 0; i < points.size{} - 1; i++) {
prev = points.get(i};
double prevX = prev.getX() + scale*prev.getDeltaX({);
next = pointg.get(i + 1);
double nextX = next.getX() + scale*next.getDeltaX();
if (x »>= previ && x <= nextX ||
X <= prevE && X >= nextX) {
double prevY = prev.get¥() + scale¥prev.getDelta¥();
double nextY = next.get¥{} + scale¥*next.getDelta¥();

54

double tmpY = (prev¥ + next¥)/2;
minY = tmpY < min¥ ? tmpY : minY¥;
}
}
return min¥;

1

public double getMaxY{doubla x, double scale} {
double maxY¥ = -1000;
Point prev;
Point next;
for {int { = 0; i < points.size() - 1; i++} |
prev = points.get{i};
double prevXi = prev.getX() + scale*prev.getDeltaX(}:;
next = points.get{i + 1);
double nextX = next.getX{) + scale*next.getDeltaX(};
if (x »= prevX && x <= nextX ||
X <= previ && ¥ >= nextX) {
double prevY = prev.get¥() + scale*prev.getDeltaY();
double nextY = next.get¥() + scale*next.getDelta¥ () ;
doukle tmp¥ = (prevY + nextY)/2;
maxy = tmp¥ > max¥ ? tmpY : maxy;
}
}
return maxyY;

}

public double getEdgeSize{double x, double scale) {
return getMaxY(x, scale) - getMinY(x, scale);
1

55

CLASSE Slice

Classe responsével por armazenar diversas informacgdes relacionadas a

uma fatia do pulmao, tais como suas curvas, dicom e dados de escalamento.

PR T e T
!
*
& {ORS : sar Henr:ique Kurolw
by

b rxandre Margues Lima

%

/*****!*******i**/
package LungPlot;

import java.util.Vector;

publie clasa Slice {
X and ¥ oftset f Vi

private static final int X OFFSET = 30;
private static final int Y OFFSET = 30:

RAgg viswp T aet
public stakie finsl int SAGGITAL ¥ OFFSET = Z80;

/7 Number ALs 1n i© Relier MRYPOLlatIio!

public static final int BEZIERPOINTS = S0;

public final double SCALE STEP = 0.025;
public final double TOLERANCE = 1.5;

nage scali Cactaor
privatse fisal double FACTOR = 1.0;

g yg 5
private Vector<Polygons> polys;

Barier Polygons
private Vector<Polygon> bezierPolys;

Sea g Data for all o her i
private Vector<ScalingData: scales;

C 1f n
private Dicom dicom;

/ G711 win v oand ._Wt_,.-...a
private Window window;

privats ViewPort wviewPort;

private int numnber;

<y] e s | u " u

private string type:

public Slice() {
pelys = maw Vector<Polygons»(};
bezierPolys = new Vector<Pclygon>();
scales = new Vector<ScalingDatas();
dicom = new Dicom{);

}

public String toString() {
return Integer.toString{number) + * (¥ + type + "}¥;
}

56

public void pushPoly{Polygon poly) {
polys.add{poly) ;

1

public Vector<Polygons> getPolys({} {
return polys;

}

public void pushBezierPoly (Polygon bezierPoly} {
beziexPolys.add(bezierPoly);

}

public Vector<Polygon> getBezierPolys() {
return beziexPolys;

}

public void pushScalingData(ScalingData scale) {
scales.add(scale);

}

rublic Vector<ScalingDatas» getScales() {
return scales;

}

public Dicom getDicom(} {
return dicom;

}

public void setDicom{Dicom dicom} {
thia.dicom = dicom;

1

public Window getWindow() |{
return window;

}

public void setWindow(Window window) {
this.window = window;

1

public ViewPort getViewRort(} {
raturn viewPort;

}

public veid setViewPort {ViewPort viewPort) {
this. viewPort = viewPort;

}

public int getNumber{) {
raturn number;

}

publie void setNumber (int number) {
this.number = number;

}

public String getType() {
reaturn type;

1

public void setType(String type} {
this.type = type;

}

public void calculateViewPort(} {
viewPort = new ViewPort():
int offsetX = X OFFSET;
int offsetY = ¥ OFFSET;
if (type == "sag"} |

of fgetY += SAGGITAL Y OFFSET;

viewPort.setTop (offsetY) ;
viewPort.setBottom(offsetY + window.getHeight () *FACTOR} ;
viewPort.setLeft (offsetX) ;
viewPort.setRight {offsetX + window.getWidth{}*FACTOR) ;

h

57

/ Ok 4 Polygons with ziev Interpolation
public void calculateBezierPolys() {
for {(int i = 0; i <« polys.size{); i++) {
Polygon poly = polys.get({i);
int nPoints = poly.getSize(};
Vector<Points> points = poly.getPoints();
boolean cyclic = poly.isCyciic():
Polygon bezierPoly = new Polygon():
bezierPoly.setCyclic (poly.isCyclic());
for (int § = 0; J < nPoints; j++) {
if (j == nPoints - 1 && gyclic == falss} {
continue;

int start 3 = §;

int prev_j.;
if (start_j - 1 »>= 0) {
prev_3j = start_j- 1;
} else if (cyclic == true) {
prev_3 = nPoints - 1;
} else {
prev_j = start_j;
}

int end j;
if {start_j + 1 < nPoints) {
end_7J = gtart j + 1;
} elss {
end_j = 0;
}

int next j;

if {end 3 + 1 < nPoints) {
next 3 = end j + 1;

} else if {cyclic == true) {
next _j = 0;

} else {
next_j = end i;

1

Gea Ne Poin wh Scale Lhep
Point prev = new Point (points.get (prev_j)};
Point start = new Point (points.get {start_j}};:
Point end = new Point {points.get (end j});
Point next = new Point {points.get (next_j});

btain = Bezier Contrel Poiats
Point controlPoints|] = Bezier. getControlPoints(prev, start,
end, next);:

Bezier Interpolatio
for {int k = ©; Kk <= BEZIERPOINTS; k++) {
double t = (double) k/BEZIERPOINTS;
Point bezierPoint = Berier.getBeziarPoint (controlPoints,

double bezierX = bezierPoint.getX({);

double bezierY = bezierPoint.getY():

double bezierDeltaX = bezierPoint.getDeltaX();
double bezierDeltaY = bezierPoint.getDelta¥({};
bezierPoly.pushPoint {new Point (bezierX, beziery,

bezjierDeltaX, bezierDelta¥}};

I L
bezierPolys.add(beziexrPoly};
} // Polygon:

}

public void caleoulateScalingData{Vector<Slices slices) {
double constCoord =
type.equais{"cor") ? dicom.getPosition¥Y{) : dicom.getPositionX(};

for {int i = 0; i < slices.size(); i++) {
Slice slice = slices.get(i);
String sliceType = slice.getTypel}:
Dicom glicebicom = slice.getDicom{};
double gliceConstCoord = sliceType.equals(“cor"} ?

58

a};

SCALE STEP} {

scale} -

edgeScale) ;

sliceDicom.getPositionY() : sliceDicom.getPositicnX(};
Vector<Polygons> gliceBezierPelys = slice.getBezierPolys{);

Polygon bezierPoly = bezierPolys.get(0);
Polygon sliceBezierPoly = sliceBezierPolys.get({0};

“aloulare the 3glice seale am rranglatic

BcalingData scalingData = new ScalingPatal();

double minY¥YScale = LungPlot.MIN SCALE - 1.9;

double maxYScale = minYScale + 3.5;

double minEdgeScale = LungPlot.MIN SCALE - 1.0;

double maxBdgeScale = minEdgeScale + 3.5;

for (double scale = LungPlot.MIN SCALE; scale <= LungPlot.MAX SCALE;
scale += 0.058} {
scalingData.pushScale (scale);

double yScale = scale;

double min¥Y = bezierPoly.getMinY ({sliceConstCoord, scale);

for (double s = minYScale; 5 <= maxYScale; s += SCALE_STEP) {
double gliceMinY = sliceBezierPoly.getMinY {constCoord,

1f (Math.abs(sliceMinY - min¥) < TOLERANCE) {
yScale = s;
min¥YScale = yScale;
max¥Scale = minYScale + 3.5;
braak;

}

scalingData.pushYScale (yScala) ;

double yTranslation = 0;

double edgeScale = scale;

double edge = bezierPoly.getEdgeSize (sliceConstCoord, scale);
for (double & = minEdgeScale; s <= maxEdgeScale; s +=

double sliceEdge =

sliceBezierPoly.getEdgeSize {constCoord, s):

if (Math.abs(edge - sliceEdge) < TOLERANCE)} |
edgeScale = g;
minEdgeScale = edgeScale;
maxEdgeScale = minEdgeScale + 3.5;
yIranglation = bezierPoly.getMinY (sliceConstCoord,

sliceBezierPoly.getMinY {constCoord,
break;
1
}
scalingData.pushEdgeScale (edgeScale) ;

scalingData.push¥Translation{yTranslation);

scales.add (scalingData) ;

59

CLASSE LungPlot

Classe principal do programa, responsavel pela interface grafica.

I I O T T O I Ty
[

E 3
/% AUTE : ar Hen e Keiti MHuroiw

IE
7

/*************'ﬁ***ﬂ****'k'k********/

package LungPlot;

import java.io.File;

import java.io.FileInputStream;
import java.io.BufferedReader;
impoxt Jjava.io.FilenameFilter;
import java.io.InputStreamReader;

import java.util.StringTokenizer;
import java.util.Arrays;

import java.util.ArraylList;
import java.util.Collections;
import java.util.Vector;

import java.awt.BorderLayout;
import java.awt.GridLayout;
import java.awt.GridBagLayout;
import java.awt.FlowLayout;
import java.awt.Dimension;

import java.awt.event.IltemEvent;
import java.awt.event.XtemlListener;

import javax.swing.JFrame;
inport javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.Jlabel;
import javax.swing.JCheckBox;
import javax.swing.JComboBox;
import javax.swing.JRadioButton;
import Javax.swing.ButtonGroup;

"

public class LungPlot extends JFrame {
private static final long serialVersionUiD = 1L;

public static final double MAX SCALE = 2.0;
public static finmal double MIN SCALE = -1.0;

private JPanel contentPane = null;
private JPanel topPanel = null;
private JPanel bottomPanel = null;
private JPanel rightPanel = aull;
private PolyPanel drawPanel = null;

Se mele din bu
private ButtonGroup scalingMode = null;
private JRadioButton noScaling = null;
private JRadioButton bottomScaling = aull;
private JRadioButton edgeScaling = null;

A2

private J8lider slider ~ null;

private Jlabkel zorSlicelabel = null;
private JLabel sagSlicelabel null;

60

Bratwm abe |
private Jlabel statusLabel = mull;

private JCheckBox showLimits = null;

private JCheckBox showCorSagIntersection = null;
LINE nd Saggit zlice o &

private JComboBox corSliceBox = null;

private JComboBox sag$liceBox Bull;

Coxror Tagei 5]
private Vector<Slice> corSlices = null;
private Vector<Slices> sagSlices = aull;

1]

public LungPlot(} {
super(};
corB8lices = new Vector<8lices();
sagBlices = mew Vector<Slicex>{);
initialize();

}

private void initialize() {
load8lices{);

this.set8ize (900, 1000};
this.setExtendedstate(this.getExtendedState()|JFrame.MAXIMIZEq_BOI¥n;
this.setContentPane(getJContentPane(});

this.setTitle("Lung Plot");

this.setVisible {true};

getStatusLabel (} .setText ("Calculating Scaling Data. Please wait...");
After s5lice ve heen ded, calcu e goalingha
for {iat i = 0; i < corSlices.size{); i++) {
corslices.get(i).calculateScalingData(sagslices);

for (imt i = 0; i < sagSlices.size(): i++) {
sagSlices.get (i} .calculateScalingData (corSlices) ;
}

getsStatusLabel () .getText (") ;

}

private JPanel getJContentPane(} {
if (contentPane == null) {

contentPane = new JPanel{);

contentPane. setLayout {new BorderLayout{));

// Mounts the Graphical Inte o
topPanel = new JPanel{);
topPanel . setLayout {new Flowlayout());
topPanel.add (getCorSlicelabel {}};
topPanel .add {(getCorS8liceBox{)}) ;
topPanel .add(getBagSliceLabel ()) ;
topPanel . add (getBagSliceBox());

drawPanel = naw PolyPanel (};
drawPanel . setCorSlices (corSlices) ;
drawPanel.setBSagSlices {sagSlices);

bottomPanel = new JPanel{);
bottomPanel . setLayout (new GridBagLayout(});
hottomPanel .add (getShowCorSagIntersection(}) ;
bottomPanel . add {getShowlimite ()) ;
bottomPanel .add {getSlider ()} ;
pbottomPanel ., add (getStatuskLabel{});

rightPanel = new JPanel();
rightPanel.setLayout (new Gridiayout {3, 1));
rightPanel.add (getNoScaling());
rightPanel .add (getBottomScaling (}) ;
rightPanel.add{getEdgeScaling());

scalingMode = new ButtonGroup{);
scalingMode.add (getNoScaling{));
scalingMode. add (getBottomScaling ()) ;
scalingMode.add {getEdgeScaling(});

61

contentPane.add{topPanel, BorderLayoukt.NORTH} ;
contentPane.add (drawPanel, BorderLayout.CENTER};
contentPane.add (bottomPanel, BorderLayout.SOUTH) ;
contentPane.add {rightPanel, BorderLayout.EAST);

}

return contentPane;

}

private JRadioButton getNoScaling{} {
if (noScaling == mail) {
noScaling = new JRadioButton();
noScaling.setText ("No Scaling'};
noScaling.addItemListener (new ScalingModeHandler{));
noScaling.set8elected (true) ;

]

return noScaling;

}

private JRadioButton getBottomScaling() {
if (bottomScaling == null)
bottomScaling = naw JRadioButton();
bottom8caling.setText {"Min Y Scaling”};
bottemScaling.addItembistener (new ScalingModeHandler(});

}

raturn bottomScaling;

!

private JRadicButton getEdgeScaling(} {
if (edgeScaling == awnll) |
edgeScaling = new JRadioButton();
edgeScaling. setText {"Bdge Scaling");
edgeScaling.addItemlistener (new ScalingModeHandlexr()):

return edgeScaling;

Laos o Mocie TR R It dley Clacs
private class ScalingModeMandler implements ItemlListener {
public void itemStateChanged{ItemEvent event) {

if (event.getSource() == noScaling) {
drawPanel . setScalingMode {0} ;

} else if (event.getScurce() == bottomScaling) {
drawPanel .zetScalingMode (1) ;

} else if (event.getSource() == edgeScaling) {
drawPanel . setScalingMode {2} ;

}

drawPanel .repaint {};

}

private JLabel getCorSliceLabel{) {
if (corsSlicelabel == null) {
corSlicelabel = new JLabel();
corSiicelabel.setText ("Coronal:"};

}

return corSlicelabel;

}

private JLabel getSagSliceLabel(} {
if (gagSliceLabel == null} {
gagSlicelLabel = new JLabel();
sagBlicelabel.setText {"Saggital:");

}

return sagSliceLabel;

}

private JComkoBox getCoxrSliceBox{} {
if (coxrSliceBox == null} {

cor8liceBox = new JComboBox{);

corSliceBox.addItem{"");

corSliceBox.addItemListener (new java.awt.event.ItemListener{} {

publie void itemStateChanged(java.awt.event.ItemEvent e} {

int corIndex = corsSliceBox.gatSelectedIndex();
drawPanel .reset () ;
drawPanel . setCorIndex{corIndex - 1};

62

if (corIndex == 0) {
drawPanel.setPlotCoronal (falge) ;
repaint{);
return;

drawPanel .setPlotCoronal {true} ;
slider.setEnabled(true);

showLimits.setEnabled{trua);
showCorSagintersection.setEnabled (trae) ;
statusLabel . setText ("scale: " + drawPanel.getScale{)}}:

repaint{};

b

% 3 w3} to ¢ LY
for {int i = 0; i < corSlices.size{}; i++) {
cor8liceBox.addltem{corSlices.get (i));

*

}
}
return corSliceBox;
}
private JComboBox getSagSliceBox{) {
if (sagSliceBox == null)
sag8liceBox = new JComboBox(};
sagSliceBox.addItem(""};
sagSliceBox.addItemlistener (new java.awt.event.Itembistener{() {
public void itemStateChanged(java.awt.event.ItemEvent &) {
int sagIndex = sagSliceBox.getSelectedIndex!();
drawPanel .resget () ;
drawPanel .getSagIndex{sagIndex - 1);
if (sagIndex == 0)
drawPanel.setPlotSaggital {false);
repaint () ;
return;
drawPanel . setPlotSaggital (true);
slider.getEnabled{true);
showLimits.setEnabled{true};
showCorSagIntersection. setEnabled (trua);
statushabel.setText (“acalse: " + drawPanel.getScale());
repaink (} ;
13K
i 1 th Sag icen ehy | LoBox *
for {int i = 0; i < sagSlices.size(}; i++} {
sagSliceBox.addiItem(sagSlices.get{i));
) }
return sagSliceBox;
}

private Jlabel getStatusLabel{) {
if (statuslabel == null) {
statushabel = new JLabel{);
statuslabel.getText ("%} ;

}

return statusLabel;

}

private JSlider getSlider()
if (slider == null)
glider = nmew JSlider({);
slider.setEnabled{falee) ;
slider.setSize (new Dimension (300, 20));
glider.setMaximum{ {int) (MAX SCALE*20));:
slider.setMinimum({int) (MIN SCALE*20)};
slider.setValue {0} ;
slider.addChangeiistener(new javax.swing.event.ChangeListener{) {
publie void stateChanged{javax.swing.event.ChangeEvent e) {
i ¢ v R s ady he

double value = {double}slider.getValue()/20.0;
drawPanel .setScale {value} ;
statusLabel.getText {"scale: " + drawPanel.getScals{)});

drawPanel .repaint. (} ;

63

I e
}

return slider;

}

private JCheckBox getShowLimits{) {
if {(showLimits == mnull) {

showLimits = new JCheckBox () ;

showhimits.setText {(*Show Limits");

showLimits.setEnabled(falsa) ;

showLimits.addTtemlistener (new java.awt.event. Itemldistener() |

public void itemStateChanged(java.awt.event.ItemEvent e} {

drawPanel .setLimits (showLimits.isSelected(}};
drawPanel .repaint () ;

}y:

return showLimits;

}

private JCheckBox getShowCorSagintersection() {
if {showCorSagIntersection == null) {
showCorSagIntersection = new JCheckBox () ;
showCor3agIntersection. setText ("Show Coronal-Saggital Intersection');
showCor8agIntersection.setEnabled (falsa) ;
showCorSagIntersection.addItemlistener (new java.awt.event.ItemListenexr()

public veid itemStateChanged (java.awt.event.ItemEvent e) (

drawPanel.setShowCorSagIntersection (showCorSaginterssction. isSelected());
drawPanel.zrepaint (};

}y;

raturn ghowCorSaglIntersection;

}

public void loadSlices() {
File dir = new File(*.");

* Fllier oat names at dou't rt with *slicelPoings *
FilenameFilter filter = new FilenameFilter() {
public boolean accept (File dir, String name) {
return name.startsWith{*slicePoints");

}
}:

String filesf] = dir.list(filter};

if (fileg == null) {
getStatuslabel {} .zetText {"No Files Foundl*);
return;

4 ‘t the f 5 by am */
ArraylList<String> fileList = new Arraylist<Strings (Arrays.asList(files));
Collections. sort (fileList);

for {int i = 0; i < fileList.size{); is++} {
String fileName = fileList.get{i);
int beginIndex = fileName.indexOf("_"} 4+ 1;
String sliceNumber = fileName.substring{beginIndex, beginIndex + 3);
8lice slice = readSlice(fileName) ;
glice.setNumber {Integer.parseInt {sliceNumber)) ;
if (fileName.contains(“cor"}) {
cor8lices.add{slice};
slice.setType{“cor");
} elsm {
sagSlices.add(slice};
slice.setType ("sag"};

}

public Slice readslice({String filename) {
double minX = 300, maxX = -300;
double minY = 300, max¥ = -300;

64

Slice slice = new Slice();
try {
Reads inp data Iz henl 2 43
FileInputSBtream fis =
new FileInputStream{filename);
InputStreamReader isr = new InputStreamReader(fis};
BufferedReader reader = new BufferedReader{isr);

I} i r of Ares
String line = readline{resader);
int num_areas = Integer.parseInt{iine);
for {int i = 0; 1 « num areas; i++) |
/ Read the number Curves
line = readlLine{reader);
int num_curves = Integer.parseInt(line);
int curve counter = 0;
for {int j = 0; j < num curves; j++} {
Polygon poly = new Polygon():

if (curve counter == D)
EINAT a Firet rve is ;
poly.setCyclic(true);

} else {

poly.setCyclic(false};

}

h mper of Point
line = readLine(reader);
int num_lines = Integer.parseint(line);

for (lat k = 0; k < num lines; k++) |
Each line . 12 o

line = resadLine (reader);
StringTokenizer s{ = new StringTokenizer(line);
double x = Double.parseDouble{st.nextToken(});
double y = Double.parseDouble(st.nextToken()};
double deltaX =
Double.parssDouble (st .nextToken(}};
double deltaY =
Double. parsaDouble(st.nextToken()) ;
Point p = new Point{x, y, deltaX, deltaY);
poly.pushPoint (p};

b culate the ximum and minicum X an LS
if (x < minX) {
minX = x;

if (x > maxx) {
max¥ = x;

if {y < min¥) {
min¥ = y;

if {y » maxy) {
maxy = y;
}

- -‘».aa‘l- «
slice.pushPoly(poly):

curve_counter++;
} T3
} 3

Window window = new Window(};
window.setLeft (minX) ;
window.setRight {maxX) ;
window. setTop (max¥) ;

window. setBottom(minY) ;
slice, getWindow (window) ;

d
Dicom dicom = new Dicom():
EX Xz
line = readLine (reader);
stringTokenizer st = new StringTokenizer{line};
double xx = Double.parseDouble{st.nextToken{});
double xy = Double.parsebouble{st.nextToken()};

65

double xz = Double.parseDouble(st.nextToken());
dicom.setXCos (xx, xy, Xz);

VH, ¥ b1
line = readLine (reader);
st = new StringTokenizer({line};
double yx = Double.parseDouble{st.nextToken()):
double yy = Double.parseDouble{st.nextToken());
doubrle yz = Double.parsaDouble(st.nextToken{}};
dicom.setYCos (yx, vy, ¥z);:

sx, . B2
line = readl.ine(reader);
st = new StringTokenizer{line};
double Bx = Double.parseDouble(st.nextToken());
double sy = Double.parseDouble(st.nextToken());
double sz = Double.parseDouble(st.nextToken{)};
dicom.setPosition(sx, sy, sz):

P8X, PSSy
line = readLine (readez);
st = new StringTckenizer{line);
double psx = Double.parseDouble(st.nextToken{)};
double psy = Double.parseDouble{st.nextToken{));
dicom.setSpacing{psx, psy);
slice.setDicom{dicon) ;
slice.calculateBezierPolys() ;
return slice;
7

catch (Bxception ex) {
statusLabel.setText ("Error cpening file * + filename);
return null;

Read from t
public String readLine{BufferedReader reader) throws Exception {
String line = "v;
do {
line = reader.readLine(};
} while (line == "v || line.startsWith(*#") == true);
raturn line;

}

public static veid main(String[] args) {
LungPlot Ip = new LungPlot({);
1p.setDefaultCloseOperation (JFrame.EXIT_ON CLGSE) ;

66

CLASSE PolyPanel

Classe de grande importancia, responsavel por toda tarefa de plotagem

das imagens das fatias.

/************‘k******i*‘k*!\'***‘k****************'ki-******\i‘*******************/
=l

.4

*

/***l’*l‘******************‘k***!’**'&*******'k************ﬁ*******ii**********/

package LungPlot;
import java.util.Vector;
import java.text.NumberFormat;

import java.awt.Color;
import java.awt.Graphics;
import java.awt.GridBagLayout;

import javax.swing.JPanel;

x i s
public class PolyPanel extends JPanel {
private static final long serialVersionUID = 1L;

e [=
private boolean plotCoronal;
private boolean plotSaggital;

1

private boolean limits;

[

private boolean showCorSaglntersection;

private boolean showSourcePoints;

St : £

private double scale;

HE » S : 1

private int scal ingMode;

privata Vector<Slices corSlices;
private Vector<Slicer sagSlices;

i urz it Ty
private int corIndex;
private int saglndex;

Lcd i

private double corSpacing;
private double sagSpacing;

public PolyPanel{) {
super () ;
initialize(};

1

private void initialize(} {
resat () ;

67

}

scalingMode = 0;

plotCoronal = false;
piotSaggital = false;
showCorSagIntersection = falsge;
showSourcePoints = true:;

corSpacing = 1;
sagSpacing = 1;
corindex = -1;

sagIndex = -1;
this.getlLayout {new GridBagLayout(});

public void reset() {

3

limits = false;

public void paintComponent {Graphics g) {

}

super.paintComponent (g) ;
normalizeSpacing(};

g.setColor{Color.black) ;

if (plotCoronal == true) {
plotCoronal (g) ;

3]
if (plot8aggital == txue) |
plotsSaggital (g} ;

bk 1Sy
if {limits == falsa) {

return;
}

double tmpScale = scale;
boolean tmpCorSaglntersection = showCorSaglntersection;
showCorSagIntersection = false;
showSourcePoints = false;
g.setColor (Color. CYAN) ;
scale = 2,
if (plotCoronal == true) {
plotCoronal (g} ;

if (plotSaggital == true) {
plotSaggital {g);

LT Ay . *
g.-setColor {Color.PINK) ;
grale = -1;
if (plotCorcnal == true) {

plotCoronal (g) ;

if (plotSaggital == true) {
plotSaggital (g) ;

scale = tmpScale;
thies. setshowCorSagIntersecticn(tmpCorSaglntersection);

public void setPlotCoronal (boolean plot} {

}

this.plotCoronal = plot;

public void setPlotSaggital (boolean plot) {

}

this.plotSaggital = plot;

public void setLimits (boolean limits) {

68

this.limits = limits;

]

public double getScale{) {
return scale;
}

public void setScale(double scale) |
this.scale = secale;

}
i 5 wia Spacing - At 2!
public veid normalizeSpacing({} {
if {plotCoronal == true && plotSaggital == trus) {
Slice sagSlice = sagSlices.get (sagIndex);
Blice corSlice = corSlices.get (corIndex);
sagSpacing =
gagSlice.getDicom{) .getSpacingX () /corSlice.getDicom(} .getSpacingXx () ;
} eise {
sagSpacing = 1.0;
} corSpacing = 1.0;

public void plotCoromnal (Graphics g) {
Slice coxSlice = vorSlices.get (corIndex);
cor8lice.calculateViewPort () ;
ViewPort corViewPort = corSlice.getViewPorti);
Window corWindow = corSlice.getWindow();

double sx = corViewPort.getWidth{)/corWindow.getWidth{);
double sy = corViewPort.getHeight (}/corWindow.getHeight () ;
double dx = corViewPort.getLeft{) - sx*corWindow.getLeft{);
double dy = corViewPort.getTop() - sy*corWindow.getTop();

4

Vector<Polygons> corBezierPolys = corSlice.getBezierPolys({):
for {int i = 0; i < corBezierPolys.size{); i++) {

Polygon bezierPoly = corBezierPelys.get{i);

int nPoints = bezierPoly.getSize();

Vector«<Points> points = bezierPoly.gebPointsal};

int[] X = new int[nPoints];

int[] ¥ = new inkt[nPoints];

for linmt j = 0; 3 < nPoints; j++) f

Point bezierPoint = points.get(j};

double bezierX = bezierPoint.getX({) +
scaletbezierPoint . getDeltaX () ;

double bezierY = bezierPoint.getY() +
scale*bezierPoint .getDelta¥ () ;

bezierX *= corSpacing;

bezierY *= corSpacing;

{int) {sx¥*bezierX + dx);
{int) (sy*bezierY + dy);

xIj]
¥{j]

n B

if {j % Slice.BEZIERPOINTS == 0 && ghowSourcePoints == true) {

g.fillRect (X (j} - 2, ¥I[3] - 2, 4, 4);

g.drawPolyline (X, ¥, nPoints);

} e

if (showCorSagIntersection == falsa) {
return;

1

double corConstCoord = corSlice.getDicom().getPositionY();

NumberFormat nf = NumberFormat.getInstance();

=1

69

nf.setMaximumFractionDigits(2);
nf.setMinimumFractionDigits(2) ;
for (int j = 0; J « sagSlices.size(); j++) {

8lice sagSlice = sagSlices.get(j);

double sagConstCoord = sagllice.getDicom() .getPositionX (};

T §C

Vector<Polygon> sagBeziexPolys = sagSlice.getBezierPolysi{);
o la Hie =T, 1ziat
ScalingData scalingData = corSlice. getScales() .get{]);
Vector<Double> scales = scalingbata.getScales(};
double scale? = scale;
double yTranslation = 0.0;
if {scalingMode == 1) {
Vector<Double» yScales = scalingData.getYScales();
for (int k = 0; k < scales.size(); k++)
it {Math.abs(scales.get{k} - scale) < 0.05) {
scale2 = yScales.get (k);
break;

}

} elae if (scalingMode == 2) {
Vector<Double> edgeScales = scalingData.getRdgeScales(};
Vector<bouble> yTranslations = scalingData.getYTranslations();
for (int k = 0; k < scales.size(}: k++) |
if (Math.abs(scales.get (k) - scale) < 0.05) |

scaleZ = edgeScales.get (k);

yTranslation = yTranslations.get (k) ;

break;

}

g.drawString{corSiice.getNumber{) + " translation: " +
nf.format (yTranslation), 600, 20 + 20%j);

g.drawString(corSlice _getNumber({) + " Scale: " + nf . format {(scale?),
500, 20 + 20*j);
if (§ == sagindex) [
g.setColor (Color.RED) ;
}

sagConstCoord *= corSpacing;
for (imt k = 0:; k < sagBezierPolys.size(}: k++} {
Polygon bezierPoly = sagBezierPolys.get (k);
double maxY = bezierPoly.getMaxY (corConstCoord, scalel} +

yTranslation;
if {(max¥ == -10600) {
continue;
}
maxy *= corSpacing;
int x = (int) (sx*sagConstCoord + dx);
int y = (imk) (sy*maxy + dy);
if (g.getColor(} |= Color.RED) {
if (k% 2 ==0) {
g.setColor{Color.BLUE} ;
} else {
g.setColor{Color.GREEN) ;
}
g.fillovalix - 2, v - 2, 4, 4};
T "ode
if (bezierPoly.isCyclic() == true) {
double minY = bezierPoly.getMin¥ (corCenstCoord, scaleZ) +
yTranslation;
min¥ %= corSpacing;
Y = (dat) (sy*minY + dy);
if {g.getColor(} != Color.RED} |
g.setlolor (Color. ORANGE)} ;
g.filloval(x - 2, v - 2, 4, 4);
1
}
g.setColor {Coler. BLACK) ;
!

70

}

public veid plotS8aggital {(Graphics g) {
Slice sagslice = sagSlices_get (sagTndex);
sagS8lice.caleulateViewPort () ;
ViewPort sagViewPort = sagSlice.getViewPort(};
Windew sagWindow = sagSlice.getWindow();

¥ % e TP

double sx = sagViewPort.getWidth () /sagWindow.getWidth();
double sy = sagViewPort.getHeight{)/sagWindow.getHeight{);
double dx = sagViewPort.getLeft() - gx*sagWindow.getlLeft({);
double dy = sagViewPort.getTop{) - sy*sagWindow.getTop{);

Vector<Polygon> sagBezierPolys = sagSlice.getBezierPolys();
for {int i = 0; i < sagBezierPolys.size(}; i++)}
Polygon sagBezlerPoly = sagBezierPolys.get(i);
int nPoints = sagBezierPoly.getSize(};
Vector<Point» points = sagBezierPoly.getPoints();

int[] X = new int{nPoints];
int[] Y = new ink[nPointsl};
for (int j = 0; j < nPoints; j++) {
Point bezierPoint = points.get{i);

double bezierX = bezierPoint.getX() +
scale*bezierPoint.getDeltaX () ;

double bezierY = bezierPoint.get¥ () +
scale*bezierPoint.getDelta¥Y () ;

bezierX ¥= sagSpacing;

bezierY *= sagSpacing;

X[jl
Y (3]

{int) {sx*bezierX + dx};
{int) (sy*bezierY + dy);

o

I Y . b
if {] % Slice.BEZIERPQINTS == 0 && showSourcePoints == true} {

g.fillRect(X[31 - 2, ¥Y[j]l - 2, 4, 4);

H G S)

g.drawPolyline (X, ¥, nPoints};

} I JOTHG
if {showCorSagintersection == false) {
refurn;

double sagConstCoord = sagSlice.getDicom{) .getPositionX{();

NumberFormat nf = NumberFormat.getInstance();
nf.setMaximumFractionDigits({2);
nf.setMinimumFractionDigits (2} ;
for {int j = 0; j < corSlices.size(}; j++) {
Slice corSlice = corSlices.get(j);
dauble corConstCoord = corSlice.getDicom{) .getPositionY();

=

Vector<Polygon> corBezierPolys = corSlice.getBezierPolys();

BealingData scalingData = sagSlice.getScales().get(j};
Vector<bDouble» scales = scalingData.getScales(};
double scale? = scale;
double yTranslation = 9.0;
if (scalingMode == 1) {
Vector<Double> yScales = scalingData.get¥Scales();
for (int k = 0; k < scales.size(); k++}
if (Math.abs{scales.get{k) - scale) < .05} {
scale2 = yScalesa.get(k);
braak:

}

} else if {scalingMode == 2) {
Vector<Double> edgeScales = scalingData.getEdgeScales();

71

Vector<Doubles> yTranslations = scalingData.getYTransiations();
for {imt k = 0; k <« scales_size(); k++) |
if (Math.abs(scales.get (k) - gcale} < 0.05) {
scale2 = edgeScales.getik);
yTranslation = yTranslations.get(k)};
break;
!
}
g.drawString{corSlice.getNumber({} + " translation: " +
nf _ format {yTranslation), 600,
Slice.SAGGITAL Y OFFSET + 20%j);

g.drawString {corS8lice.getNumber(} + ° Scale: * + nf.format (scale2},
500, Slice.SAGGIﬁAQ_E;OFFSET + 20%*3) ;

if {j == corIndex) {
g.setColor(Color.RED} ;
}

corCongtCoord *= sagSpacing;
for (imt k = 0; k < corBezierPolys.size{); k++} {
Polygon bkezierPoly = corBezierPolys.get(k):
double maxY = berzierPoly.getMaxY (sagConstCoord, scale2) +

yTranslation;
if {(max¥ == -1000) {
continue;
1
maxY¥ *= sagSpacing;
int x = {int) (sx*corConstCoord + dx);
int y = {int} {sy*max¥ + dy);
if (g.getColor({) != Color.RED} {
i€ (k % 2 == 0}
g.setColor (Color.BLUE) ;
} eles {
g.setCelor {Color.GREEN) ;
}
g.fillovali(x - 2, yv - 2, 4, 4);
Y ok
if (bezierbPoly.isCyclic() == true} {
double minY = bezierPoly.getMinY (sagConstCoord, scaleZ} +
yTranslation;

min¥ *= sagSpacing;

y = {(int) (sy*min¥ + dy);

if {g.getColor() != Color.RED) {
g-.setColor (Color. ORANGE) ;

g.fi1l0vali{x - 2, v - 2, 4, 4);
1
}

g.setColor (Celor. BLACK} ;

public int getScalingMode(} {
return scalingMode;

public veid setScalingMode (int scalingMode) {
this.scalingMode = scalingMode;

public int getCorIndex{) {
return corIndex;

public void setCorIndex{int corIndex} {
this.corindex = corindex;

public Vector<Siices getCorSlices(} {
return corsSlices;

publie void setCorSlices (Vector<Slices corSlices) {

72

public

public

public

publie

public

this.cor8lices = worSlices;

int getSagIndex{} {
return saglndex;

void seiSaglndex(int sagIndex) {
this.gagIndex = sagTndex;

Vector<S8lice» getSagSlices() {
return sagS8lices;

veid setSagSlices(Vector<Slice» sagSlices) |
thie.sagSlices = sagSlices;

void setShowCorSagintersection{boolean showCorSagIntersection) {
thia.showCorSagintersection = showCorSagintersection;
this.showSourcePoints = !this.showCorSagIntersection;

73

CLASSE ScalingData

Classe responséavel por armazenar todas as informagGes de escalamento
entre as fatias, para os métodos de escalamento por dimensdo de aresta e
coordenada y inferior.

package LungPlot;
import java.util.Vector;

public class ScalingData {
private Vector<Doubles> scales;
private Vector<Doubles> edgeScalesn;
private Vector<Double> yTranslations;
private Vector<Double> yScales;

public ScalingData{) {
scales = mew Vector<Doublex();
edgeScales = new Vector<Doubles(};
yTranslatione = new Vector<Doublex(};
v8cales = new Vector<Doublex{}:

public Vector<Double» getEdgeScales() {
return edgeScales;

public void pushEdgeScale (double edgeScale) {
edgeScales.add (edgeScale) ;

publie Vector<Double> get8cales() {
return scales;

public veid pushScale{double scale) {
scales.add(scale);

public Vector<Double> get¥YScales() {
return yvScales;

public void push¥Scale{double scale) |
yScales.add(scale} ;

public Vector<Doubles getY¥Tranalations() {
return yTranslations;

public void push¥Translation{double translaticn} {
yTranslations.add(translation) ;

CLASSE Dicom

Classe que contém dados relativos ao Dicom, tais como fatores de

rotagédo e translagdo das imagens entre 2D e 3D.

/*********\l‘i************i**i****************l‘*************i‘**************/

o
*)

/**********W*************‘k********************‘k************‘k*************/

package LungPlot;

publie c¢lass Dicom {

A

private double pax, psy:

" . :
private double sx, oy, sz;
private double xx, xy, xz;
private douhle yx, vy, vz;

public veid setSpacing{double psx, double psy) {
this.psx = psx;
this.psy = psy;

public double getSpacingX() {
rekurn psx;

public double getSpacing¥Y() {
refturn psy;

public void setPosition(donble sx, double sy, double sz} {
thig.sx = 8sx;
this.sy = sy;
thig.sz = gz;

public double getPositionx() {
return sSx;

public double getPosition¥({) {
return sy;

public double getPositionZ{) {
return sz;

public void setXCos(double xx, double xy, double xz) {
thig.xx = xx;
this.xy = xy;
this.xz = xz;

public double getXX() {
return xx;

public double getX¥() {

75

public

public

public

public

public

return xy;

double getXZ{) {
returp xz;

void setYCos(double yx, double yy, doubla yz) {
this.yx = yx;
this.yy Yy:
this.yz ya;

double getYX(} {
return yx;

double getYY¥() |
return yy;

double get¥z{) {
return yz;

76

CLASSE Bezier

Classe auxiliar que contém métodos responsaveis por obter a interpolacéo
de curvas por Bezier.

/**************i*****ﬁ********************************i***************'&**’f

/************************i**l‘***************l’****************‘l’*i’*********/

package LungPlot;

public class Bezier {

5 L, , 4 . . e
public static Point getBezierPoint (Point[] controlPoints, double t) {

Point pl = controlPBoints{0];

Point p2 = controlPoints[i];

Point p2 = gontrolPoints[2];

Point p4 = controlPoints[3};

double x, y;

double deltaX, deltaY;

if (pl 1= p2 && p3 != pa} {
4 4

¥ = pd.getX{)*t2L¥t + 3¥pI.getX{)*E*t¥ (1-t) + 3*p2.getX () *t*{1-t)*(1-t) +
pl.getX{}*{2-t)*{1-t)*(1-t);
Y = pd.getY{)*L*t*t + 3%pI.get¥ () *E*L*(1-£) + 3+p2.get¥(}*&*{1-£)*{l-t) +

Pl.getY(}*{1l-E)}*(i-E}*{1-t};
deltaX = pd4.getDeltaX{}*t*t*L + 3%p3.getDelbaX{}*L*t*{1-t) +
3*p2.getDeltaX{} *t* (1-t}*{1-t) + pl.getDeltaX{}*{l-t}*{21-t}*{1-t);
delta¥Y = pd.getDelta¥Y () *L*t*t + 3*p3 .getDelta¥ () *t*e* (1-1} +
3*p2.getDelta¥ (}*£*{1-£}*(1-t) + pi.getDelta¥{(}*{1l-t)*{1-t)*(1-t};
} else if (pl1 == p2)
> .4 T %Pt
x = pd.getX(}*e*t + 2%*p3 getX(}*e*{1-t) + p2.getX()*(1l-t}*(1-t);
Y pd.get¥{)*T*L + 2#p3 . getY(}*c*{1l-t) + p2.get¥{)*(1l-t)*(1-t};
deltaX = p4.getDeltaX()*t*: 4+ 2%p3.getDeltaX () *t*{1-t) +
p2.getheltaX () * (1-t) * (1-t);
deltaY = pd.getDelta¥Y(}*t¥t + 2%p3.getDelta¥(}¥t*(1-t) +
p2.getDelta¥(}* {(1-t) *{1-t};
} else if (p3 == p4a){

2 i

on

i t eant
X = p3.getX(}*t*t + 2*p2.getX () *t*(1-t) + pil.getX{)*(1-t)*(1-t);
Yy = pR.get¥ (J*t*t + 2%p2.get¥ () *t¥(1-t) + pl.get¥()*{1-t)*{1l-t);
deltaX = p3.getDeltaX()*t*t + 2*p2.getDeltaX(}*cx(1-t) +
pl.getDeltaX(}*(1-t}*(1-t});
deltaY = p3.getDelta¥ () *L*t + 2*p2.getDelta¥Y{)*t*(1l-£) +
pl.getDeltaY () * (1-t)* (L-t);
} elge { = I

x p3.getX{)*t + p2.getX{)*(1-t};
Y = p3.get¥(}*t + p2.get¥()}*(1-t);
deltaX = p3.getDeltaX()*t + p2.getDeltaX({)*(1-t);
delta¥ = p3.getDeltaY(}*t + p2.getDelta¥(}=*{1-t};

}

Point bezierPoint = new Point (x, y, deltaX, deltaY);
return bezierPoint;

¥

public static Point{] getControlPoints(Point prev, Point start, Point end, Point next) {

77

Point[] points = new Point{4];

Point prev_start = start.add(prev.times({-1});
Point start_end = end.add(start.times(-1)};
double len = start_end.length();

Point end next = next.add{end.times(-1}};
prev_start.normalize(};
start_end.normalize(};

end next.noxmalize(};

Point prev_end = prev_start.add{start end);
Point start next = start end.add{end next);
prev_end.normalize(};
start_next.normalize();

double cosl = Math.abs(prev_end.scalar{start_end));
double cos2 = Math.abs(start_nextAscalar(startuend)};

points{0] = new Point(start);
points[3] = new Peint (end);

if {cosl > Math.sgrt(2)/2 && prev_start.length{) » 0) {
points (1] = new Point (start.getX{} + prev_end.getX{}*len/3,
start.get¥{) +
prev_end.get¥({}*len/3,
start.getDeltaX{) +
prev_end.getDeltaX() /3,
start.getPelta¥Y{} +
prev_end.getDelta¥ () /3);
} else |
pointa[l] = points[o];
1

if (cos2 > Math.sgrt(2)/2 && end next.length(} » 0) {
points[2] = new Point{end.getX{) - start next.getX({}*len/3,
end.getY() -

start_next.getY(}*len/3,
end.getDeltaX(} -

start_next.getDeltaX()}/3,
end.getDeltaY () -

start_next.getDeltaY{)/3);
} else {
points[2} = points[3];
}

return points;

78

CLASSES Window e ViewPort

Classes responsaveis por armazenar dados relacionados a transformacgéo

entre coordenadas de Window e ViewPort.

/-k*************i-*******ﬁ*******************‘k'k*********#******************/

/***********i‘*************************i'k**i**i******"'*‘****!’******“i*****/

package LungPlot;

public class Window {
private double left;
private deuble right;
private double top;
private double bottom;

public double getBottom{} {
retuen bhotlom;

public void setBottom(double bottom) {
this.bottom = bottom;
}

public double getLeft () {
raturn lefti;

publie void setleft (double left) {
this.left = left;
}

public double getRight (} {
raturn right;
}

public void setRight (double right} {
this.right = right;

public double getTop() f
raturn top;
}

public void setTop(douhla top) {
this.top = top;
}

public double getWidth() {
return right - left;

public double getHeight{) {
return top - beottom;

79

/****i‘**:\'*********************i‘**i’**********************i’**i’*************/

TE

Ed

/****i******i****************i*i**i*********i**************i**********i**/

package LungFlot;

el
public class ViewPort {
private double left;
private double right;
private double top;
private double bottom;

public double getBottom(} {
return bottom;

public void setBottom(deuble bottom) |
this.bottom = bottom;

public double getlLeft{} {
retura left;

}
public void setLeft (double left)} |
this.left = left;

public double getRight(} {
return right;
1

publiec void setRight {double right) {
thie.right = right;
i

public double getTop() {
rekturn top;
}

public void setTop{double top) {
this.top = top;
}

public double getWidth() {
return right - left;

public double getHeight{) {
return top - bottom;

30

